1 / 47

# 第 2 章 插值法 - PowerPoint PPT Presentation

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' 第 2 章 插值法' - rajah-stone

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

1、问题背景

§1 引 言

2、一般概念

P(xi)=yi (i=0,1,…,n)

3、插值多项式存在唯一性定理

P(xi)=yi, i=0,1,…,n

1、线性插值和抛物插值

L1(xk)=yk, L1(xk+1)=yk+1

§2 拉格朗日插值

2、拉格朗日插值多项式

0.352274,用线性插值计算和抛物插值计算sin0.3367的值,

1、问题的引入

§3 差商与牛顿插值

2、差商定义

3、差商的基本性质

a0

a1

a2

a3

ak=f[x0,x1,x2,…,xk]

【例】f(x)的函数表如下，求4次牛顿差值多项式，并由此求f(0.596)的近似值【例】f(x)的函数表如下，求4次牛顿差值多项式，并由此求f(0.596)的近似值

§4 埃尔米特插值

P(xi)=f(xi), (i=0,1,2), P′(x1)=f(x1)

H3(xk)=yk, H3(xk+1)=yk+1

H′3(xk)=mk, H′3(xk+1)=mk+1

H3(xk)=yk, H3(xk+1)=yk+1

H′3(xk)=mk, H′3(xk+1)=mk+1

H3(xk)=yk, H3(xk+1)=yk+1

H′3(xk)=mk, H′3(xk+1)=mk+1

§5 分段低次插值

1、高次插值的病态性质

3、分段三次埃尔米特插值

P48-ex2, ex4, ex7

P49-ex16, ex17

P48-ex8