Activité
This presentation is the property of its rightful owner.
Sponsored Links
1 / 19

L’IRRATIONNALITE DE PowerPoint PPT Presentation


  • 66 Views
  • Uploaded on
  • Presentation posted in: General

Activité : est irrationnel. L’IRRATIONNALITE DE. Démontrer par l’absurde : Enigme « A bas les profs ! ». Un peu d’histoire…. 1. 2. 3. 4. 5. 6. Le point sur les nombres. Démontrer par l’absurde  : Enigme : “ A bas les profs ! ”

Download Presentation

L’IRRATIONNALITE DE

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


L irrationnalite de

Activité : est irrationnel

L’IRRATIONNALITEDE

Démontrer par l’absurde :

Enigme « A bas les profs ! »

Un peu d’histoire…

1.

2.

3.

4.

5.

6.

Le point sur les nombres


L irrationnalite de

Démontrer par l’absurde :

Enigme : “ A bas les profs ! ”

Quatre élèves sont restés dans la classe pendant la récréation ; l’un d’eux a écrit : “ A bas les profs ! ”

au tableau noir. Lorsque le professeur rentre en classe, il demande :

“ Qui a écrit ça ? ”


L irrationnalite de

  • Paul, qui porte des lunettes : “ C’est une fille ”.

  • Jacques qui n’a pas de lunettes :

  • “ C’est quelqu’un qui porte des lunettes ”.

  • Marie qui ne porte pas de lunettes :

  • “ Ce n’est pas moi ”.

  • Françoise qui porte des lunettes : “ C’est quelqu’un qui ne porte pas de lunettes ”

  • Le ( ou la ) coupable a menti. Les trois autres ont dit la vérité. Qui a écrit au

  • tableau noir ?


  • L irrationnalite de

    Supposons que le coupable soit Paul :

    Paul mentet les autres disent la vérité.

    • Jacques qui n’a pas de lunettes :

    • “ C’est quelqu’un qui porte des lunettes ”.

    • Marie qui ne porte pas de lunettes :

    • “ Ce n’est pas moi ”.

    • Françoise qui porte des lunettes :

    • " C’est quelqu’un qui ne porte pas de lunettes ”.

    Il y a une contradiction entre ce que disent Jacques et Françoise.

    Donc Paul n’est pas le coupable.


    L irrationnalite de

    Supposons que le coupable soit Jacques:

    Jacques mentet les autres disent la vérité.

    • Paul, qui porte des lunettes : “ C’est une fille ”.

    • Marie qui ne porte pas de lunettes :

    • “ Ce n’est pas moi ”.

    • Françoise qui porte des lunettes :

    • " C’est quelqu’un qui ne porte pas de lunettes ”.

    D’après Paul et Françoise, le coupable est une fille qui ne porte pas de lunettes donc c’est Marie.

    Il y a une contradiction car Marie dit que ce n’est pas elle.

    Donc Jacques n’est pas le coupable.


    L irrationnalite de

    Supposons que la coupable soit Marie :

    Marie mentet les autres disent la vérité.

    • Paul, qui porte des lunettes : “ C’est une fille ”.

    • Jacques qui n’a pas de lunettes :

    • “ C’est quelqu’un qui porte des lunettes ”

    • Françoise qui porte des lunettes :

    • " C’est quelqu’un qui ne porte pas de lunettes ”

    Il y a une contradiction entre ce que disent Jacques et Françoise.

    Donc Marie n’est pas la coupable.


    L irrationnalite de

    Supposons que la coupable soit Françoise :

    Françoise mentet les autres disent la vérité.

    • Paul, qui porte des lunettes : “ C’est une fille ”.

    • Jacques qui n’a pas de lunettes :

    • “ C’est quelqu’un qui porte des lunettes ”.

    • Marie qui ne porte pas de lunettes :

    • “ Ce n’est pas moi ”.

    • Françoise qui porte des lunettes : “ C’est quelqu’un qui ne porte pas de lunettes ”.

    Toutes les informations données par Paul, Jacques et Marie confirment que Françoise est la coupable.


    L irrationnalite de

    Un peu d’histoire…

    Au 5ème siècle avant J.C, au sud de l'Italie Pythagore et ses disciples qui formaient une secte mathématique et religieuse croyaient que les entiers et les fractions pouvaient expliquer tous les phénomènes du monde. L'harmonie de l'univers reposait sur ces nombres qui suffisaient à leur bonheur. En conséquence chaque longueur aurait dû s'écrire sous la forme d'un entier ou d'une fraction.


    L irrationnalite de

    Or le théorème de Pythagore montre que la diagonale d'un carré de coté 1 est un nombre de carré 2, aujourd'hui noté .

    Certaines racines carrées sont des nombres bien connus : par exemple = 3. Mais d'autres, comme , ne « tombent pas juste ». On s'est alors demandé si pouvait s'écrire sous la forme d'une fraction.


    L irrationnalite de

    Activité : est irrationnel

    Le but de ce travail est de prouver qu'il est impossible d'écrire sous la forme d'une fraction. Pour cela, on suppose que peut s'écrire sous forme de fraction irréductible, et on montre que l'on aboutit à une contradiction.


    L irrationnalite de

    Supposons que est égal à une fraction

    irréductible, c’est à dire que : PGCD(a ; b) = 1

    1. Montrer que l'on aurait alors :

    donc

    soit encore :

    D’où :


    L irrationnalite de

    2. En déduire que l'on aurait 2 b² = a².

    donc

    D’où en effectuant les produits en croix :

    En particulier, 2b² et a² devraient avoir

    le même chiffre des unités.


    L irrationnalite de

    3. Le chiffre des unités de a peut être 0 ou 1

    ou 2 ou 3 ou ... ou 9 , celui de b aussi.

    Compléter les tableaux suivants :

    Chiffre des

    unités de a

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Chiffre des

    unités de a²

    Chiffre des

    unités de b

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Chiffre des

    unités de b²

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    Chiffre des

    unités de 2b²

    0

    2

    8

    8

    2

    0

    2

    8

    8

    2


    L irrationnalite de

    Chiffre des

    unités de a²

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    Chiffre des

    unités de 2b²

    0

    2

    8

    8

    2

    0

    2

    8

    8

    2

    • 4. Entourer en rouge les chiffres qui convien-

    • nent et barrer ceux qui ne conviennent pas

      • le chiffre des unitésde a² peut être :

      • 0123456789

    • le chiffre des unitésde 2 b² peut être :

    • 0123456789


    L irrationnalite de

    5. En déduire que a devrait se terminer par 0

    et que b devrait se terminer par 0 ou 5.

    Chiffre des

    unités de a

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    Chiffre des

    unités de a²

    Chiffre des

    unités de b

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Chiffre des

    unités de 2b²

    0

    2

    8

    8

    2

    0

    2

    8

    8

    2

    Donc a devrait se terminer par 0.

    et b devrait se terminer par 0 ou 5.


    L irrationnalite de

    6. En déduire que l'on pourrait simplifier la

    fraction par 5. Quelle est la contradiction ?

    Conclure.

    Or, on a supposé est égal à une fraction

    irréductible, c’est à dire que : PGCD(a ; b) = 1

    D’après la question 5., a devrait se terminer par 0

    et b devrait se terminer par 0 ou 5.

    Donc a et b sont divisibles par 5.

    Autrement dit, a et b ont 5 comme diviseur

    commun.

    Ce qui aboutit à une contradiction.


    L irrationnalite de

    6.Conclure.

    On en conclut que ne peut pas s’écrire

    sous la forme d’une fraction.

    On dit que est un nombre irrationnel.


    L irrationnalite de

    Le point sur les nombres :

    8

    9

    99

    17

    2

    3

    -6,4

    5

    92

    0

    -8

    0,75

    1,5

    Entiers

    Décimaux

    Rationnels

    Irrationnels


    L irrationnalite de

    FIN !


  • Login