Activité
Download
1 / 19

L’IRRATIONNALITE DE - PowerPoint PPT Presentation


  • 84 Views
  • Uploaded on

Activité : est irrationnel. L’IRRATIONNALITE DE. Démontrer par l’absurde : Enigme « A bas les profs ! ». Un peu d’histoire…. 1. 2. 3. 4. 5. 6. Le point sur les nombres. Démontrer par l’absurde  : Enigme : “ A bas les profs ! ”

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' L’IRRATIONNALITE DE' - rachel-fitzgerald


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Activité : est irrationnel

L’IRRATIONNALITEDE

Démontrer par l’absurde :

Enigme « A bas les profs ! »

Un peu d’histoire…

1.

2.

3.

4.

5.

6.

Le point sur les nombres


Démontrer par l’absurde :

Enigme : “ A bas les profs ! ”

Quatre élèves sont restés dans la classe pendant la récréation ; l’un d’eux a écrit : “ A bas les profs ! ”

au tableau noir. Lorsque le professeur rentre en classe, il demande :

“ Qui a écrit ça ? ”


  • Paul, qui porte des lunettes : “ C’est une fille ”.

  • Jacques qui n’a pas de lunettes :

  • “ C’est quelqu’un qui porte des lunettes ”.

  • Marie qui ne porte pas de lunettes :

  • “ Ce n’est pas moi ”.

  • Françoise qui porte des lunettes : “ C’est quelqu’un qui ne porte pas de lunettes ”

  • Le ( ou la ) coupable a menti. Les trois autres ont dit la vérité. Qui a écrit au

  • tableau noir ?


  • Supposons que le coupable soit Paul :

    Paul mentet les autres disent la vérité.

    • Jacques qui n’a pas de lunettes :

    • “ C’est quelqu’un qui porte des lunettes ”.

    • Marie qui ne porte pas de lunettes :

    • “ Ce n’est pas moi ”.

    • Françoise qui porte des lunettes :

    • " C’est quelqu’un qui ne porte pas de lunettes ”.

    Il y a une contradiction entre ce que disent Jacques et Françoise.

    Donc Paul n’est pas le coupable.


    Supposons que le coupable soit Jacques:

    Jacques mentet les autres disent la vérité.

    • Paul, qui porte des lunettes : “ C’est une fille ”.

    • Marie qui ne porte pas de lunettes :

    • “ Ce n’est pas moi ”.

    • Françoise qui porte des lunettes :

    • " C’est quelqu’un qui ne porte pas de lunettes ”.

    D’après Paul et Françoise, le coupable est une fille qui ne porte pas de lunettes donc c’est Marie.

    Il y a une contradiction car Marie dit que ce n’est pas elle.

    Donc Jacques n’est pas le coupable.


    Supposons que la coupable soit Marie :

    Marie mentet les autres disent la vérité.

    • Paul, qui porte des lunettes : “ C’est une fille ”.

    • Jacques qui n’a pas de lunettes :

    • “ C’est quelqu’un qui porte des lunettes ”

    • Françoise qui porte des lunettes :

    • " C’est quelqu’un qui ne porte pas de lunettes ”

    Il y a une contradiction entre ce que disent Jacques et Françoise.

    Donc Marie n’est pas la coupable.


    Supposons que la coupable soit Françoise :

    Françoise mentet les autres disent la vérité.

    • Paul, qui porte des lunettes : “ C’est une fille ”.

    • Jacques qui n’a pas de lunettes :

    • “ C’est quelqu’un qui porte des lunettes ”.

    • Marie qui ne porte pas de lunettes :

    • “ Ce n’est pas moi ”.

    • Françoise qui porte des lunettes : “ C’est quelqu’un qui ne porte pas de lunettes ”.

    Toutes les informations données par Paul, Jacques et Marie confirment que Françoise est la coupable.


    Un peu d’histoire

    Au 5ème siècle avant J.C, au sud de l'Italie Pythagore et ses disciples qui formaient une secte mathématique et religieuse croyaient que les entiers et les fractions pouvaient expliquer tous les phénomènes du monde. L'harmonie de l'univers reposait sur ces nombres qui suffisaient à leur bonheur. En conséquence chaque longueur aurait dû s'écrire sous la forme d'un entier ou d'une fraction.


    Or le théorème de Pythagore montre que la diagonale d'un carré de coté 1 est un nombre de carré 2, aujourd'hui noté .

    Certaines racines carrées sont des nombres bien connus : par exemple = 3. Mais d'autres, comme , ne « tombent pas juste ». On s'est alors demandé si pouvait s'écrire sous la forme d'une fraction.


    Activité carré de coté 1 est un nombre de carré 2, aujourd'hui noté . : est irrationnel

    Le but de ce travail est de prouver qu'il est impossible d'écrire sous la forme d'une fraction. Pour cela, on suppose que peut s'écrire sous forme de fraction irréductible, et on montre que l'on aboutit à une contradiction.


    Supposons que est égal à une fraction carré de coté 1 est un nombre de carré 2, aujourd'hui noté .

    irréductible, c’est à dire que : PGCD(a ; b) = 1

    1. Montrer que l'on aurait alors :

    donc

    soit encore :

    D’où :


    2. carré de coté 1 est un nombre de carré 2, aujourd'hui noté . En déduire que l'on aurait 2 b² = a².

    donc

    D’où en effectuant les produits en croix :

    En particulier, 2b² et a² devraient avoir

    le même chiffre des unités.


    3. carré de coté 1 est un nombre de carré 2, aujourd'hui noté . Le chiffre des unités de a peut être 0 ou 1

    ou 2 ou 3 ou ... ou 9 , celui de b aussi.

    Compléter les tableaux suivants :

    Chiffre des

    unités de a

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Chiffre des

    unités de a²

    Chiffre des

    unités de b

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Chiffre des

    unités de b²

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    Chiffre des

    unités de 2b²

    0

    2

    8

    8

    2

    0

    2

    8

    8

    2


    Chiffre des carré de coté 1 est un nombre de carré 2, aujourd'hui noté .

    unités de a²

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    Chiffre des

    unités de 2b²

    0

    2

    8

    8

    2

    0

    2

    8

    8

    2

    • 4. Entourer en rouge les chiffres qui convien-

    • nent et barrer ceux qui ne conviennent pas

      • le chiffre des unitésde a² peut être :

      • 0 1 2 3 4 5 6 7 8 9

    • le chiffre des unitésde 2 b² peut être :

    • 0 1 2 3 4 5 6 7 8 9


    5. carré de coté 1 est un nombre de carré 2, aujourd'hui noté . En déduire que a devrait se terminer par 0

    et que b devrait se terminer par 0 ou 5.

    Chiffre des

    unités de a

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0

    1

    4

    9

    6

    5

    6

    9

    4

    1

    Chiffre des

    unités de a²

    Chiffre des

    unités de b

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Chiffre des

    unités de 2b²

    0

    2

    8

    8

    2

    0

    2

    8

    8

    2

    Donc a devrait se terminer par 0.

    et b devrait se terminer par 0 ou 5.


    6. carré de coté 1 est un nombre de carré 2, aujourd'hui noté . En déduire que l'on pourrait simplifier la

    fraction par 5. Quelle est la contradiction ?

    Conclure.

    Or, on a supposé est égal à une fraction

    irréductible, c’est à dire que : PGCD(a ; b) = 1

    D’après la question 5., a devrait se terminer par 0

    et b devrait se terminer par 0 ou 5.

    Donc a et b sont divisibles par 5.

    Autrement dit, a et b ont 5 comme diviseur

    commun.

    Ce qui aboutit à une contradiction.


    6. carré de coté 1 est un nombre de carré 2, aujourd'hui noté . Conclure.

    On en conclut que ne peut pas s’écrire

    sous la forme d’une fraction.

    On dit que est un nombre irrationnel.


    Le point sur les nombres : carré de coté 1 est un nombre de carré 2, aujourd'hui noté .

    8

    9

    99

    17

    2

    3

    -6,4

    5

    92

    0

    -8

    0,75

    1,5

    Entiers

    Décimaux

    Rationnels

    Irrationnels


    FIN ! carré de coté 1 est un nombre de carré 2, aujourd'hui noté .


    ad