Convicting exploitable software vulnerabilities an efficient input provenance based approach
This presentation is the property of its rightful owner.
Sponsored Links
1 / 21

Convicting Exploitable Software Vulnerabilities: An Efficient Input Provenance Based Approach PowerPoint PPT Presentation


  • 45 Views
  • Uploaded on
  • Presentation posted in: General

The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. Convicting Exploitable Software Vulnerabilities: An Efficient Input Provenance Based Approach. Zhiqiang Lin Xiangyu Zhang, Dongyan Xu Purdue University June 27 th , 2008. FC. User. Motivation.

Download Presentation

Convicting Exploitable Software Vulnerabilities: An Efficient Input Provenance Based Approach

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Convicting exploitable software vulnerabilities an efficient input provenance based approach

The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Convicting Exploitable Software Vulnerabilities: An Efficient Input Provenance Based Approach

Zhiqiang Lin

Xiangyu Zhang, Dongyan Xu

Purdue University

June 27th, 2008


Motivation

FC

User

Motivation

Internet Worms

(CodeRed, Slammer)

Vulnerability In Software

DoS

DoS

Accidental Breaches

in Security

Viruses,

Trojan Horses,

Bots (Botnet)

Denial of

Service (DoS)


Related work

Related Work

  • Dynamic analysis

    • Program shepherding (V. Kiriansky et al.)

      TaintCheck (J. Newsome et al.)

      Control Flow Integrity (M. Abadi et al.)

      Data Flow Integrity (M. Castro et al.)…

    • Run-time overhead, and waiting for attack

  • Static analysis

    • BOON (D. Wagner et al.), Splint (D. Larochelle et al.), Archer (Y. Xie et al.), RATS, Flawfinder

    • False positive

  • Recent automated multi-path exploration

    • DART (P. Godefroid et al.), Cute (K. Sen et al.), EXE (C. Cadar et al.), SAGE (P. Godefroid et al.)

    • Low Efficiency


Problem statement and our technique

Problem Statement and Our Technique

  • How to more efficiently discover/convict software vulnerability

  • An Efficient Input Provenance Based Approach

    • Conservative static analysis => Suspect

    • Dynamic analysis => Convicting the suspect and pruning false positives

      • Randomly mutation is avoided

      • No symbolic execution (can handle long execution)

  • Key idea

    • Data lineage tracing (Input Provenance)


Basic idea

Basic Idea

Input Data label (Offset):6 789

fread(&imagehed,sizeof(imagehed),1,in);

...

width=(imagehed.wide_lo+256*imagehed.wide_hi)

height=(imagehed.high_lo+256*imagehed.high_hi);

...

if((...(byte *)malloc(width*height))...)

{

fclose(in);

return(_PICERR_NOMEM);

}

...

231

245

246

494

495

496

497

498

Input a.gif (256x128):xx...0x00 0x01 0x80 0x00...

Integer Overflow

  • An image viewer: Zgv-5.8/readgif.c


Architecture

Architecture

Input Lineage Tracer

Program Input

Lineage

Program/

binary

Run-time Detector

Static-front End

Input Mutator

New Input

Suspect

Evidence

A piece of instruction which is exploitable to trigger the vulnerability


Component 1 input lineage tracer

Component 1. Input Lineage Tracer

  • Label the input stream (using the offset)

  • Track their propagation

mov 0xfffffffc(%ebp),%eax

mov %eax, 0xfffffff8(%ebp)

add %eax, %ecx

mov %ecx, %edx


Component 1 input lineage tracer1

Component 1. Input Lineage Tracer

  • Key concept

    • Data Dependency

      (direct propagation)

    • Control dependency

      (indirect propagation)

mov 0xfffffffc(%ebp),%eax

mov %eax,0xfffffff8(%ebp)

  • b=a

  • 1. b=a;

  • a==1

cmpl $0x1,0xfffffffc(%ebp)

jne 804832d <main+0x25>

  • b=1

movl $0x1,0xfffffff8(%ebp)

  • 1. if (a==1)

  • 2. b=1;

  • 3. else

  • 4. c=0;

jmp 8048334 <main+0x2c>

  • c=0

movl $0x0,0xfffffff4(%ebp)


Component 1 data lineage tracer

Component 1. Data Lineage Tracer

Input data tracking (labeled with its offset in the input stream)

  • DL(Si)=DL([email protected])

  • DL([email protected]) =

get_new_id()

if def is an input value

U DL([email protected])otherwise

DL Representation: reduced ordered Binary Decision Diagram (roBDD)


Component 1 data lineage tracer1

Component 1. Data Lineage Tracer

  • An Example

DL([email protected]) = DL([email protected]) U DL([email protected]) = {6; 7}

READ (buf,size,...), 0<= i < size , buf[i], DL(buf[i]@pc231) = get_new_id()

231

245

246

494

495

496

497

498

DL([email protected]) = DL([email protected]) U DL([email protected]) = {8; 9}

fread(&imagehed,sizeof(imagehed),1,in);

...

width=(imagehed.wide_lo+256*imagehed.wide_hi)

height=(imagehed.high_lo+256*imagehed.high_hi);

...

if((...(byte *)malloc(width*height))...)

{

fclose(in);

return(_PICERR_NOMEM);

}

...

DL([email protected])= DL(buf[6]@pc231) = {6}

DL([email protected])=DL(buf[7]@pc231) = {7}

DL((width*height)@494) = {6;7;8;9}


Component 2 input mutator

Component 2. Input Mutator

Program Input

Evidence

Data Lineage

Suspect

Heuristics#1: Buffer overflow mutation

(double buffer size …)

Heuristics#2: Format string mutation

(replace %s in format string argument)

Heuristics#3: Integer overflow mutation

(Boundary integer value: 0xffffffff,0,0x0fffffff)


Implementation

Implementation

  • Diablo:

    • Control flow graph

    • Statically generate Control dependency to facilitate Valgrind instrumentation

    • http://diablo.elis.ugent.be/

  • Valgrind:

    • Lineage tracing

    • http://valgrind.org/

    • RoBDD (Reduced ordered Binary Decision Diagram) to represent the data lineage.


Evaluation effectiveness

Evaluation - Effectiveness

  • Static Detector

    • Known vulnerability

      • CVE-2001-1413 (ncompress 4.2.4, SO)

      • CVE-2001-1228 (gzip 1.2.4, SO)

      • CVE-2002-1496 (Nullhttpd 0.50, HO)

      • CVE-2002-1549 (lhttpd 0.1, SO)

      • CVE-2000-0573 (wu-ftpd-2.6.0, Format String)

      • CVE-2001-0609 (cfingerd-1.4.3, Format String)

      • CVE-2005-0226 (ngircd-0.8.2, Format String)

      • CVE-2004-0904 (xzgv-0.8, IO & HO)

      • CVE-2006-3082 (GnuPG 1.4.3, IO & HO)

  • RATS (Unknown)

    • Make extension to catch: buffer overflow, integer overflow (ipgrab-0.99, epstool-3.3, dcraw-7.94)


Evaluation cve 2006 3082 gnupg 1 4 3

Evaluation - CVE-2006-3082 (GnuPG 1.4.3)

  • GnuPG Parse_User_ID Remote Buffer Overflow Vulnerability

pktlen=in[2,3,4,5]

=0x ff ff ff ff


Evaluation cve 2001 0609 cfingerd 1 4 3

Evaluation - CVE-2001-0609 (Cfingerd-1.4.3)

syslog(LOG_NOTICE, "%s", (char *) syslog_str);


Evaluation ipgrab 0 99 a new vul

Evaluation - Ipgrab-0.99 (A New VUL)


Evaluation performance lineage tracing

Evaluation – Performance (Lineage Tracing)

Platform: two 2.13 Ghz Pentium processors and 2G RAM running the Linux kernel 2.6.15


Evaluation performance

Evaluation - Performance


Evaluation space

Evaluation - Space


Summary

Summary

  • An input lineage tracing and mutation system:

  • Capable of convicting known and unknown vulnerability.

  • Has reasonable overhead for the scenario of offline vulnerability conviction.

Data Lineage Tracer

Program Input

Lineage

New Input

Program/

binary

Run-time Detector

Static-front End

Input Mutator

Suspect

Evidence


Convicting exploitable software vulnerabilities an efficient input provenance based approach

Q & A

Thank you

For more information:

{zlin, xyzhang, [email protected]


  • Login