Engr 1100 introduction to engineering analysis
Download
1 / 27

ENGR-1100 Introduction to Engineering Analysis - PowerPoint PPT Presentation


  • 153 Views
  • Updated On :

ENGR-1100 Introduction to Engineering Analysis. Lecture 9. Previous Lecture Outline. Moment of a force. Principle of moments and Varignon’s law. Lecture Outline. Vector representation of a moment: - Moment of a force about a point. -Moment of a force about a line. Right-Hand System .

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'ENGR-1100 Introduction to Engineering Analysis' - phaedra


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Slide2 l.jpg

Previous Lecture Outline

  • Moment of a force.

  • Principle of moments and Varignon’s law.


Slide3 l.jpg

Lecture Outline

  • Vector representation of a moment:

    • - Moment of a force about a point.

    • -Moment of a force about a line.


Slide4 l.jpg

Right-Hand System

The Cartesian coordinates axes are arranged as a right-hand system.


Slide5 l.jpg

Multiplication of Cartesian Vectors

  • The scalar (or dot) product.

  • The vector (or cross) product.


Slide6 l.jpg

A

q

B

0< q <1800

The Scalar (or dot) Product

The scalar product of two intersecting vectors

A•B=B•A=AB cos(q)

A•B = Ax Bx + Ay By + Az Bz

The angle between the vectors can be found by doing the dot product and dividing the result by the scalar component of AB


Slide7 l.jpg

0< q <1800

The vector (or cross) product

The vector product of two intersecting vectors A and B, by definition, yields a vector C that has the magnitude that is the product of the magnitude of vectors A and B and the sine of the angle between them with a direction that is perpendicular to the plane containing vectors A and B.

AxB=-BxA=(AB sin(q))ec

C

B

q

A


Vector representation of a moment l.jpg

It is often more convenient to use the vector approach to simplify moment calculation.

O

r

d

F

a

Vector Representation of a Moment

A

M0=r X F = | r || F |sin a e

Where: r is the position vector from point O to a point A on the line if action of the forceF.

e – unit vector perpendicular to plane containing r and F.


Slide9 l.jpg

simplify moment calculation.

O

r2

d

r1

F

a2

A1

a1

A2

Does the moment depends on the location of point A along the line of action of F?

d = r1sin a1

= r2sin a2

M0=r X F = | r || F |sin a e

=F (rsin a) e

=F d e


Slide10 l.jpg

z simplify moment calculation.

F

The location of point A

A

rAB

rA= xAi+ yAj+ zA k

B

rB

rA

zA

zB

The location of point B

y

xB

yB

rB= xBi+ yBj+ zB k

xA

yA

Since:

x

rA= rB+ rAB

Finding the Position Vector

r= rAB = rA-rB= (xAi+ yAj+ zA k ) - (xBi+ yBj+ zB k ) =

(xA- xB) i+ (yA- yB) j+ (zA- zB) k


Slide11 l.jpg

y simplify moment calculation.

F

A

r

j

O

x

i

i j k

rx ry 0

Fx Fy 0

M0= = (rx Fy - ry Fx)k= Mzk

(rx Fy - ry Fx)k= Mzk

Two Dimensional Case

F= Fxi+ Fyj

r= rxi+ ryj

M0=r X F = (rxi+ ryj) X (Fxi+ Fyj) =

rx Fx(ix i ) + rx Fy(ix j ) + ry Fx(jx i ) + ry Fy(jx j ) =


Slide12 l.jpg

z simplify moment calculation.

k

r

A

O

y

i

j

x

Three Dimensional Case

F

F= Fxi+ Fyj+ Fzk

r= rxi+ ryj + rzk

M0=r X F = (ryFz-rzFy)i+(rzFx-rxFz)j +(rxFy-ryFx)k

= Mxi +Myj +Mzk


Slide13 l.jpg

We can also use the determinant form: simplify moment calculation.

The scalar components of the moment:

i j k

rx ry rz

Fx Fy Fz

Mx= (ryFz-rzFy)

My=(rzFx-rxFz)

Mz= (rxFy-ryFx)

M0= = (ryFz-rzFy)i+(rzFx-rxFz)j +(rxFy-ryFx)k

= Mxi +Myj +Mzk

M0=r X F = (ryFz-rzFy)i+(rzFx-rxFz)j +(rxFy-ryFx)k

= Mxi +Myj +Mzk


Slide14 l.jpg

| simplify moment calculation. Mo|= Mx2 + My2 + Mz2

The magnitude of the moment:

The moment can also be written as:

Mo=M0 e

Where:

e=cos (qx) i+ cos (qy) j +cos (qz) k

The direction:

qx=cos-1(Mx/M); qy=cos-1(My/M); qz=cos-1(Mz/M);


Slide15 l.jpg

F simplify moment calculation.

z

rB=rA+rBA

B

rBA

A

M0=(rA+rBA) X F =

rA

rB

k

O

y

i

j

M0= (rAX F)

x

The position vector can be drawn to any point on

the line of action of the force

Does the moment depend on the location of the point along the line of action of F in the three dimensional case?

M0=rB X F

M0= (rAX F)+(rBAX F )

But rBA is collinear with F


Slide16 l.jpg

The principle of a moment; proof simplify moment calculation.

M0=r X F

But:

R =F1+F2 …. Fn

Therefore:

M0= r X R= r X ( F1+F2 …. Fn )=

(r XF1)+(r X F2 )+..…+(r XFn )

Thus:

M0=MR=M1+M2+…..+Mn


Slide17 l.jpg

z simplify moment calculation.

B

F

13 in

O

y

12 in

15 in

A

x

P4-47

Example P4-47

A force with magnitude of 928 lb acts at a point in a body as shown in Fig P4-47. Determine the moment of the force about point O.


Slide18 l.jpg

z simplify moment calculation.

B

F

13 in

Fz= F cos(qz) =928 *{13/23.2}=520.1 lb

O

y

12 in

15 in

rOB= 13k[in]

A

x

Solution

dAB= 122 +152 +132 =23.3 in

Fx= F cos(qx) =928 *{(–12)/23.2}=-480 lb

Fy= F cos(qy) = 928 *{(–15)/23.2}=-600 lb

F= -480i - 600j+ 520.1k[lb]


Slide19 l.jpg

z simplify moment calculation.

B

i j k

0013

-480-600520

F

13 in

M0=

O

y

12 in

15 in

A

x

F= -480i - 600j+ 520.1k lb

rOB= 13kin

M0= [0-13*(-600)] i - [0-13*(-480)] j +0 k

M0= 7800i - 6240jlb•in


Slide20 l.jpg

Class Assignment: simplify moment calculation. Exercise set 4-48

please submit to TA at the end of the lecture

A force with a magnitude of 860 N acts at a point in a body as shown in Fig. P4-48. Determine

 a) The moment of the force about point C.

b)The perpendicular distance from the line of action of the force to point C.

  • Solution:

  • Mc=283i -155.7j +119.7k Nm

  • d=0.401m


Slide21 l.jpg

B simplify moment calculation.

en

MOB=(MOen) en =[(rXF) en] en= MOBen

A moment of a force about a line


Slide22 l.jpg

M simplify moment calculation. OB= MOen = (rXF) en =

en

i j k

rx ry rz

Fx Fy Fz

enxeny enz

rx ry rz

Fx Fy Fz

MOB= MOen = (rXF) en =

Where: enx, eny and enz are the Cartesian components of the unit vector

MOB=(MOen) en =[(rXF) en] en= MOBen


Slide23 l.jpg

B simplify moment calculation.

C

200 mm

F

O

y

220 mm

240 mm

A

x

Example P4-62

The magnitude of the force Fin the figure is 595 N. Determine the scalar component of the moment at point O about line OC.


Slide24 l.jpg

d simplify moment calculation. AB= 2202 +2002 =297.3 mm

Fz= F cos(qz) =595 *{–200/297.3} = 400.2 N

Solution

Fx= F cos(qx) =595 *{(–220)/297.3} = -440.3 N

Fy= F cos(qy) = 595 *{0/297.3}=0 N

F= -440.3i +0 j + 400.2kN

rOA = 220 i+ 240 jmm


Slide25 l.jpg

i j k simplify moment calculation.

220 240 0

-440.3 0 400.2

M0=

F= -440.3i +0 j + 400.2kN

rOA = 220 i+ 240 jmm

M0= [240*400.2-0] i - [220*400.2-0] j + [0-240*(-400.2)] k Nmm

M0= 96i - 88j + 105.7kNm


Slide26 l.jpg

d simplify moment calculation. OC= 2202 +2002 =297.3 mm

z

M0= 96i - 88j + 105.7kNm

Mo

B

C

200 mm

F

O

y

220 mm

eOC= 220/297.3i +0 j + 200/297.3k

240 mm

A

x

eOC= 0.74i +0 j + 0.673k

MOC= MOeOC = 96*0.74-88*0

+105.7*0.673

MOC= 142.2 Nm


Slide27 l.jpg

Class Assignment: simplify moment calculation. Exercise set 4-61

please submit to TA at the end of the lecture

The magnitude of the force Fin Fig. P4-61 is 450 lb. Determine the scalar component of the moment at point B about line BC.

Solution:

MBC=2.78 in.kip


ad