- 83 Views
- Uploaded on
- Presentation posted in: General

Collinearity

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Collinearity

The Problem of Large Correlations Among the Independent Variables

What is collinearity?

Why is it a problem?

How do I know if I’ve got it?

What can I do about it?

- Within the set of IVs, one or more IVs are (nearly) totally predicted by the other IVs.
- In such a case, the b or beta weights are poorly estimated.
- Problem of the “Bouncing Betas.”

1. Variance Inflation Factor (VIF).

Standard error of the b weight with 2 IVs:

Sampling Variance of b weight

VIF

Standard Error with k predictors:

Large values of VIF are trouble. Some say values > 10 are high.

Tolerance is

Small values are trouble. Maybe .10?

Number

Eigenval

Condition

Variance Proportions

Index

Constant

X1

X2

X3

1

3.771

1.00

.004

.006

.006

.008

2

.106

5.969

.003

.029

.268

.774

3

.079

6.90

.000

.749

.397

.066

4

.039

9.946

.993

.215

.329

.152

Lambda is an eigenvalue.

Number refers to a linear combination of the predictors.

Eigenvalue refers to the variance of that combination.

Collinearity is spotted by finding 2 or more variables that have large proportions of variance (.50 or more) that correspond to large condition indices. A rule of thumb is to label as large those condition indices in the range of 30 or larger. No apparent problem here.

Number

Eigenval

Condition

Variance Proportions

Index

Constant

X1

X2

X3

1

3.819

1.00

.004

.006

.002

.002

2

.117

5.707

.043

.384

.041

.087

3

.047

9.025

.876

.608

.001

.042

4

.017

15.128

.077

.002

.967

.868

The last condition index (15.128) is highly associated with X2 and X3. The b weights for X2 and X3 are probably not well estimated.

- Lump it. Admit ambiguity; SE of b weights. Refer also to correlations.
- Select or combine variables.
- Factor analyze set of IVs.
- Use another type of analysis (e.g., path analysis).
- Use another type of regression (ridge regression).
- Unit weights (no longer regression).

- What is collinearity?
- Why is collinearity a problem?
- What is the VIF?
- What is Tolerance?
- What is a condition index?
- What are some things you can do to deal with collinearity?