Dick bond l.jpg
Advertisement
This presentation is the property of its rightful owner.
1 / 49

Dick Bond PowerPoint PPT Presentation

Dick Bond Inflation & its Cosmic Probes , now & then CMB & tilted L CDM status as of Feb 25, 2008: ACBAR08 & CBI5year peaks 3+4+5+damping & ACBAR excess cf. CBI excess WMAP5year aph this week; @CIFAR08 next week

Download Presentation

Dick Bond

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Dick bond l.jpg

Dick Bond

Inflation & its Cosmic Probes, now&then

CMB & tilted LCDM status as of Feb 25, 2008:

ACBAR08 & CBI5year peaks 3+4+5+damping & ACBAR excess cf. CBI excess

WMAP5year aph this week; @CIFAR08 next week

July 1982 Nuffield Conference on Very Early Universe Cambridge: how to test inflation – gravitational metric / density fluctuation spectrum

Outgrowth: nearly scale invariant, amplitude TBD

Dec 2007 VEU 25 years after: assess the progress on inflation, both theoretical and observational


Dick bond2 l.jpg

Dick Bond

Inflation Trajectories, now&then

Inflation Thenk=(1+q)(a) = -dlnH/dlna

~r(k)/16 0<  <1

= multi-parameter expansion in (lnHa ~ lnk)

~ 10 good e-folds in a (k~10-4Mpc-1 to ~ 1 Mpc-1 LSS)

~ 10+ parameters? Bond, Contaldi, Huang, Kofman, Vaudrevange 08 H(f),V(f)

 ~0 to 2 to 3/2 to ~.4 now, on its way to 0?

Inflation Now1+w(a) goes to2(1+q)/3

~1 good e-fold. only ~2params es= (dlnV/dy)2/4 @ pivot pt

all 1+w <2/3 trajectories give an allowed potential & kinetic energy but …

Huang, Bond & Kofman 07


Slide3 l.jpg

INFLATION NOW

PROBES NOW

  • Cosmological Constant (w=-1)

  • Quintessence

    (-1≤w≤1)

  • Phantom field (w≤-1)

  • Tachyon fields (-1 ≤ w ≤ 0)

  • K-essence

    (no prior on w)


Measuring constant w sne cmb wl lss l.jpg

Measuring constant w (SNe+CMB+WL+LSS)

1+w = 0.02 +/- 0.05

w(a)=w0+wa(1-a)

piecewise parameterization 4,9,40 modes in redshift

9 & 40 into Parameter eigenmodes data cannot determine >2 EOS parameters

DETF Albrecht etal06, Crittenden etal06, hbk07

s1=0.12 s2=0.32 s3=0.63


Slide5 l.jpg

Inflation Now1+w(a)= esf(a/aeq;as/aeq;zs)Zhiqi Huang, Bond & Kofman07: 3-param formula accurately fits slow-to-moderate roll & even wild rising baroque late-inflaton trajectories, as well as thawing & freezing trajectories

Cosmic Probes Now CFHTLS SN(192),WL(Apr07),CMB,BAO,LSS,Lya

  • es= (dlnV/dy)2/4 = late-inflaton (potential gradient)2

  • =0.0+-0.25 now;

  • weak as < 0.3 (zs>2.3) now

  • esto +-0.07then Planck1+JDEM SN+DUNE WL, weak as <0.21 then, (zs>3.7)

  • 3rdparamzs (~des /dlna) ill-determined now & then

  • cannot reconstruct the quintessence potential, just the slope es& hubble drag info

    (late-inflaton mass is < Planck mass, but not by a lot)

Cosmic Probes Then JDEM-SN + DUNE-WL + Planck1


Measuring the single parameter e s sne cmb wl lss lya l.jpg

Measuring the single parameter es(SNe+CMB+WL+LSS+Lya)

Modified CosmoMC with Weak Lensing and time-varying w models


Measuring the 3 parameters with current data l.jpg

Measuring the 3 parameters with current data

  • Use 3-parameter formula over 0<z<4 & w(z>4)=wh(irrelevant parameter unless large).

as<0.3 data (zs>2.3)


Slide8 l.jpg

INFLATION NOW

PROBES THEN


Forecast jdem sn 2500 hi z 500 low z dune wl 50 sky gals @z 0 1 1 1 35 min 2 planck1yr l.jpg

Forecast: JDEM-SN(2500 hi-z + 500 low-z)+ DUNE-WL(50% sky, gals @z = 0.1-1.1, 35/min2 ) + Planck1yr

Beyond Einstein panel: LISA+JDEM

as<0.21 (95%CL)

(zs>3.7)

ESA (+NASA/CSA)

es=0.02+0.07-0.06

zs (~des /dlna) ill-determined


Slide10 l.jpg

CMB NOW


Slide11 l.jpg

I

N

F

L

A

T

I

O

N

the nonlinear COSMIC WEB

  • Secondary Anisotropies

    • Non-Linear Evolution

    • Weak Lensing

    • Thermal and Kinetic SZ effect

    • Submm/radio sources, etc.

  • Primary Anisotropies

    • Tightly coupled Photon-Baryon fluid oscillations

    • viscously damped

    • Linear regime of perturbations

    • Gravitational redshifting

Decoupling LSS

reionization

19 Mpc

13.7-10-50Gyrs

10Gyrs

13.7Gyrs

today


Cmbology l.jpg

Probing the linear & nonlinear cosmic web

CMBology

Inflation Histories

(CMBall+LSS)

subdominant

phenomena

(isocurvature, BSI)

Secondary

Anisotropies (CBI,ACT)

(tSZ, kSZ, reion)

Foregrounds

CBI, Planck

Polarization of

the CMB, Gravity Waves

(CBI, Boom, Planck, Spider)

Non-Gaussianity

(Boom, CBI, WMAP)

Dark Energy Histories

(& CFHTLS-SN+WL)

roulette inflation potential T=t+iq


Slide13 l.jpg

CBI pol to [email protected]

Bicep @SP

Quiet2

(1000 HEMTs)

@Chile

CBI2 to early’08

Acbar to Jan’06, 07f @SP

QUaD @SP

Quiet1

SCUBA2

Spider

(12000 bolometers)

2312 bolometer @LDB

APEX

SZA

JCMT @Hawaii

(~400 bolometers)

@Chile

(Interferometer)

@Cal

ACT

Clover @Chile

(3000 bolometers)

3 frequencies @Chile

[email protected]

[email protected]

2017

2004

2006

2008

[email protected]

2005

2007

SPT

LHC

2009

[email protected]

[email protected] 2009-2013?

(1000 bolometers)

@South Pole

ALMA

DASI @SP

(Interferometer)

@Chile

Polarbear

(300 bolometers)@Cal

CAPMAP

Planck08.9

AMI

(84 bolometers)

+ HEMTs @L2

9 frequencies

GBT


Slide14 l.jpg

CMB/LSS Phenomenology

  • Dalal

  • Dore

  • Kesden

  • MacTavish

  • Pfrommer

  • Shirokov

  • CITA/CIfAR there

  • Mivelle-Deschenes (IAS)

  • Pogosyan (U of Alberta)

  • Myers (NRAO)

  • Holder (McGill)

  • Hoekstra (UVictoria)

  • van Waerbeke (UBC)

  • CITA/CIfAR here

  • Bond

  • Contaldi

  • Lewis

  • Sievers

  • Pen

  • McDonald

  • Majumdar

  • Nolta

  • Iliev

  • Kofman

  • Vaudrevange

  • Huang

  • UofT here

  • Netterfield

  • Crill

  • Carlberg

  • Yee

  • & Exptal/Analysis/Phenomenology Teams here & there

  • Boomerang03 (98)

  • CBI5yr, CBI2

  • Acbar08

  • WMAP (Nolta, Dore)

  • CFHTLS – WeakLens

  • CFHTLS - Supernovae

  • RCS2 (RCS1; Virmos-Descart)

Parameter data now:CMBall_pol

SDSS P(k), BAO, 2dF P(k)

Weak lens (Virmos/RCS1, CFHTLS, RCS2) ~100sqdeg Benjamin etal. aph/0703570v1

Lya forest (SDSS)

SN1a “gold”(192,15 z>1) CFHTLS

then:ACT (SZ),Spider, Planck, 21(1+z)cm GMRT,SKA

Prokushkin


Slide15 l.jpg

WMAP3 sees 3rd pk, B03 sees 4th

  • ‘Shallow’ scan, 75 hours, fsky=3.0%, large scale TT

  • ‘deep’ scan, 125 hours, fsky=0.28% 115sq deg, ~ Planck2yr

B03+B98 final soon


Slide16 l.jpg

Current state

October 06

Polarization

a Frontier

CBI E

CBI B

Current state

October 06

You are seeing this before people in the field

CBI 2.5 yr EE, ~ best so far, ~QuaD

WMAP3 V band


Slide17 l.jpg

ACBAR08

Reichardt et.al. astro-ph Thurs Jan 10

2.1 x detector-hours of ACBAR07

4.9 x sky coverage of ACBAR07 1.7% of sky

Calibration uncertainty down to 2.2% from 6% via WMAP3

3rd & 4th & 5th peaks, brilliant damping tail

ACBAR excess > 2000, 1.7sigma consistent with CBI excess (tSZ), but could be enhanced sub-mm sources @ 150 GHz


Slide19 l.jpg

ACBAR sees 3rd 4th 5th peaks

& damping tail out to 2000+


Slide20 l.jpg

Lens – no-lens ~3s

but it would prefer a larger amplitude ~2.3 times the Lens – no-lens CL rather than 1


Slide21 l.jpg

CBI excess 04, 2.5 yrs

cf. CBI excess Feb08, 4.5 yrs


Slide22 l.jpg

tSZ~f(n) x s87 x CL-SZ template

Current high L state

Feb08

CBI5yr excess 08

ACBAR08 excess

marginalizationcritical to get ns & dns /dlnk; tSZ, radio, submm sources


Slide23 l.jpg

primary lensed cmb + SZ sources

primary lensed cmb + submm sources (enhanced)

acbar08+CBIcomb05

+BIMA+WMAP3+

Std 6 + s8SZ7

s8 =0.80±0.03primary

=0.95±0.04SZ SZtemplate-dependent

(Wm = 0.26±0.03)

weak lensing CFHTLS’07

+ Virmos-Descart

s8 = 0.80 +- .05

if Wm = 0.26

CBI only

s8 dilemma


Slide24 l.jpg

CMB THEN


Slide25 l.jpg

[email protected]

why Atacama? driest desert in the world. thus: cbi, toco, apex, asti, act, alma, quiet, clover

[email protected]


Slide26 l.jpg

WMAP-BOOM-ACBAR-ACT:

the high resolution frontier

Toby marriage 01.08 for the act collabration


Slide27 l.jpg

ACT

Science:

Observations:

CMB: l>1000

Growth of structure

Eqn. of state

Cluster (SZ, KSZ

X-rays, & optical)

Atacama Cosmology Telescope

Neutrino mass

Diffuse SZ

Ionization history

OV/KSZ

Inflation

Lensing

Power spectrum

Collaboration:

Cardiff

Columbia

CUNY

INAOE

NASA/GSFC

Haverford

NIST

Princeton

UPenn

Toronto

Rutgers

UBC

U. Catolica

U. KwaZulu-Natal

UMass

U. Pittsburgh


Slide28 l.jpg

ACBAR-ACT: Bullet Cluster a la Clowe

6 min of ‘07 data @ 145 GHz (30d)

2008: 145, 215, 280 GHZ @ 1000 bolometers each; observing plan 0.5yr in 08 & in 09


Slide29 l.jpg

PRIMARY END @ 2012?

CMB ~2009+Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover


Slide30 l.jpg

COSMIC PARAMETERS NOW & THEN


Slide31 l.jpg

Standard Parameters of Cosmic Structure Formation

r < 0.47 or

< 0.2895% CL

New Parameters of Cosmic Structure Formation


Slide32 l.jpg

TheParameters of Cosmic Structure Formation

Cosmic Numerology: aph/0801.1491 – our Acbar paper on the basic 7+; bckv07

WMAP3modified+B03+CBIcombined+Acbar08+LSS (SDSS+2dF) + DASI (incl polarization and CMB weak lensing and tSZ)

ns = .962 +- .014(+-.005 Planck1)

.93 +- .03 @0.05/Mpcrun&tensor

r=At / As < 0.47cmb95% CL (+-.03 P1)

<.36 CMB+LSS run&tensor;

< .05 ln r prior!

dns /dln k=-.04 +- .02 (+-.005 P1) CMB+LSS run&tensorprior change?

As = 22 +- 2 x 10-10

1+w = 0.02 +/- 0.05 ‘phantom DE’ allowed?!

Wbh2 = .0226 +- .0006

Wch2= .116 +- .005

WL = .72 +.02- .03

h = .704 +- .022

Wm= .27 + .03 -.02

zreh =11.7 +2.1- 2.4

fNL=87+-60?! (+- 5-10 P1)


Slide33 l.jpg

INFLATION PARAMETERS THEN

ns(+-.005 Planck1)

r (+-.03 P1)

dns /dln k (+-.005 P1) cf. .04 +- .02

Blind scalar & tensor power spectrum analyses then

more parameters

Blind primoridial non-Gaussian analyses then

fNL (+- 5-10 P1) cf. 87+-60?!


Slide34 l.jpg

INFLATION THEN

WHAT IS ALLOWED?

radically broken scale invariance by variable braking as acceleration approaches deceleration, preheating & the end of inflation k=(1+q)(a) =r(k)/16

Blind power spectrum analysis cf. data, then & now

expand k in localized mode functions e.g. Chebyshev/B-spline coefficients b

the measures on bmatter choice for “theory prior” = informed priors?


Slide35 l.jpg

lne(nodal 5) + 4 params. Uniform in exp(nodal bandpowers) cf. uniform in nodal bandpowers reconstructed from April07 CMB+LSS data using B-spline nodal point expansion & MCMC: shows prior dependence with current data

self consistency: order 5

ln(e +0.1) ~uniform prior

r(.002) <0.55

eself consistency: order 5

ln(e +0.0001) ~ log prior

r(.002) <0.22


Slide36 l.jpg

lne(nodal 5) + 4 params. Uniform in exp(nodal bandpowers) cf. uniform in nodal bandpowers reconstructed from April07 CMB+LSS data using Chebyshev nodal point expansion & MCMC: shows prior dependence with current data

extreme log prior

uniform prior


Slide37 l.jpg

CL BB forlne(nodal 5) + 4 paramsinflation trajectories reconstructed from CMB+LSS data using Chebyshev nodal point expansion & MCMC

Planck satellite 2008.6

Spider balloon 2009.9

uniform prior

Spider+Planck broad-band error

extreme log prior


Planck1 simulation input lcdm acbar run uniform tensor l.jpg

Planck1 simulation:input LCDM (Acbar)+run+uniform tensor

order 5 expansions recover input r to r ~0.05

PsPtreconstructed cf.

input of LCDM with scalar running & r=0.1

esorder 5 uniform prior

esorder 5 log prior

lnPslnPt(nodal 5 and 5)

B-pol simulation:~10K detectors > 100x Planck

stringent test of the e-trajectory method: input recovered to r <0.001


Slide39 l.jpg

INFLATION THEN

WHAT IS PREDICTED?

Smoothly broken scale invariance by nearly uniform braking (standard of 80s/90s/00s) r~0.03-0.5

or highly variable braking r tiny

(stringy cosmology) r<10-10


Slide40 l.jpg

Old view: Theory prior = delta function of THE correct one and only theory

Old Inflation

1980

-inflation

Chaotic inflation

New Inflation

Power-law inflation

SUGRA inflation

Double Inflation

Radical BSI inflation

variable MP inflation

Extended inflation

1990

Natural pNGB inflation

Hybrid inflation

Assisted inflation

SUSY F-term inflation

SUSY D-term inflation

Brane inflation

Super-natural

Inflation

2000

SUSY P-term inflation

K-flation

N-flation

DBI inflation

inflation

Warped Brane inflation

Tachyon inflation

Racetrack inflation

Roulette inflation Kahler moduli/axion


Slide41 l.jpg

lnV~y = Uniform acceleration, ns= .97, r = 0.26,

(ns= .95 r = 0.50)

Power-law inflation

V/MP4~y2, r=0.13, ns=.97, Dy ~10

~ y4r = 0.26, ns= .95, Dy ~16

Chaotic inflation

), r(k), ns(k), e(k)

V (f|| , fperp

Radical BSI inflation

anything goes

V/MP4 ~Lred4sin2(y/fred2-1/2 ), ns~ 1-fred-2 ,

to match ns=.96, r~0.032, fred~ 5,

to match ns= .97, r ~0.048, fred~ 5.8, Dy ~13

Natural pNGB inflation


Slide42 l.jpg

  • Old view: Theory prior = delta function of THE correct one and only theory

New view: Theory prior = probability distribution on an energy landscape whose featuresare at best only glimpsed,

huge number of potential minima, inflation the late stage flow in the low energy structure toward these minima. Critical role of collective coordinates in the low energy landscape:

moduli fields, sizes and shapes of geometrical structures such as holes in a dynamical extra-dimensional (6D) manifold approaching stabilization

moving brane & antibraneseparations (D3,D7)

Theory prior ~ probability of trajectories given potential parameters of the collective coordinatesX probability of the potential parameters X probability of initial conditions


Slide43 l.jpg

Roulette: which minimum for the rolling ball depends upon the throw; but which roulette wheel we play is chance too.

The ‘house’ does not just play dice with the world.

V~MP4Ps r (1-e/3)3/2

~(1016Gev)4r/0.1 (1-e/3)

~(few x1013Gev)4

ns~ - dlne /dlnk /(1-e)

i.e., a finely-tuned potential shape

Roulette inflation Kahler moduli/axion


Slide44 l.jpg

V/MP4~y2, r=0.13, ns=.97, Dy ~10

Chaotic inflation

stringy inflation 2003-08

General argument (Lyth96 bound): if the inflaton < the Planck mass, then Dy < 1 over DN ~ 50, since e = (dy /d ln a)2 & r = 16e hence r < .007 …N-flation?

typical r < 10-10

D3-D7 brane inflation, a la KKLMMT03

Dy ~. 2/nbrane1/2 << 1 BM06

Roulette inflation Kahler moduli/axion

r <~ 10-10 &Dy<.002

As & ns~0.97 OK but by statistical selection!

running dns/dlnk exists, but small via smallobservable window


Slide45 l.jpg

forecast Planck2.5

100&143

Spider10d

95&150

Synchrotron pol’n

Dust pol’n

are higher in B

Foreground Template removals from multi-frequency data

is crucial 10-40


Slide46 l.jpg

SPIDER Tensor Signal

  • Simulation of large scale polarization signal

http://www.astro.caltech.edu/~lgg/spider_front.htm

No Tensor

Tensor

GW/scalar curvature: current from CMB+LSS: r < 0.47 or < 0.28 95%; good shot at 0.02 95% CL with BB polarization (+- .02 PL2.5+Spider), .01 target; Bpol .001 BUT foregrounds/systematics? But r(k), low Energy inflation


Slide47 l.jpg

Inflation then summary

the basic 6 parameter model with or without GW fits all of the data OK

Usual GW limits come from adding r with minimal consistency (7 params). r <.28 comes from relating high k region of 8 & LSS to low k region of GW CL

uniform priors in (k) ~ r(k)/16: for current data, (k) goes up at low k & the scalar power downturns (if there is freedom in the mode expansion to do this). Enforces GW. ln (+ TINY) prior gives lower r.

a B-pol with r<.001 breaks this prior dependence, even Planck+Spider r~.03

Prior probabilities on the inflation trajectories are crucial and cannot be decided at this time. Philosophy: be as wide open and least prejudiced as possible

An ensemble of trajectories arises in many-moduli string models. Roulette inflation: complex hole sizes in `large 6D volume’TINY r~10-10& data-selected braking to get ns & Dy <<1 (general theorem: if the normalized inflatony < 1 over ~50 e-folds then r < .007). By contrast,for nearly uniform acceleration, (e.g. power law & PNGB inflaton potentials), r ~.03-.3 but Dy~10. Is this deadly???

Even with low energy inflation, the prospects are good with Spider and even Planck to either detect the GW-induced B-mode of polarization or set a powerful upper limit vs. nearly uniform acceleration, pointing to stringy or other exotic models. Both experiments have strong Cdn roles.Bpol is ~ 20x0


Slide48 l.jpg

Inflation now summary

  • the data cannot determine more than 2 w-parameters (+ csound?). general higher order Chebyshev or spline expansion in1+was for “inflation-then”=(1+q)is not that useful. Parameter eigenmodes show what is probed

  • The w(a)=w0+wa(1-a) phenomenology requires baroque potentials

  • Philosophy of HBK07:backtrack from now (z=0) all w-trajectories arising from quintessence(es >0) and the phantom equivalent (es <0); use a 3-parameter model to well-approximate even rather baroque w-trajectories.

  • We ignore constraints on Q-density from photon-decoupling and BBN because further trajectory extrapolation is needed. Can include via a prior on WQ(a) at z_dec and z_bbn

  • For general slow-to-moderate rolling one needs 2 “dynamical parameters” (as, es) & WQ to describe w to a few % for the not-too-baroque w-trajectories. A 3rd param zs, (~des /dlna) is ill-determined now & in aPlanck1yr-CMB+JDEM-SN+DUNE-WL future.

  • In the early-exit scenario, the information stored inasis erased by Hubble friction over the observable range &w can be described by a single parameteres.

  • asis < 0.3 current data (zs >2.3) to <0.21 (zs >3.7) in Planck1yr-CMB+JDEM-SN+DUNE-WL future

  • current observations are well-centered around the cosmological constantes=0.0+-0.25

  • in Planck1yr-CMB+JDEM-SN+DUNE-WL futureesto +-0.07

  • but one cannot reconstruct the quintessence potential, just the slope es & hubble drag info

  • late-inflaton mass is < Planck mass, but not by a lot


Slide49 l.jpg

End


  • Login