Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
This presentation is the property of its rightful owner.
Sponsored Links
1 / 58

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) PowerPoint PPT Presentation


  • 52 Views
  • Uploaded on
  • Presentation posted in: General

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [ UWB Channel Model for Indoor Residential Environment ] Date Submitted: [16 September, 2004 ] Source: [ Chia-Chin Chong, Youngeil Kim, SeongSoo Lee ]

Download Presentation

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Project ieee p802 15 working group for wireless personal area networks wpans 4574294

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [UWB Channel Model for Indoor Residential Environment]

Date Submitted: [16 September, 2004]

Source: [Chia-Chin Chong, Youngeil Kim, SeongSoo Lee]

Company [Samsung Advanced Institute of Technology (SAIT)]

Address [RF Technology Group, Comm. & Networking Lab., P. O. Box 111, Suwon 440-600, Korea.]

Voice:[+82-31-280-6865], FAX: [+82-31-280-9555], E-Mail: [[email protected]]

Re: [Response to Call for Contributions on IEEE 802.15.4a Channel Models]

Abstract:[This contribution describes the UWB channel measurement results in indoor residential environment based in several types of high-rise apartments. It consists of detailed characterization of both the large-scale and small-scale parameters of the channel such as frequency-domain parameters, temporal-domain parameters, small-scale amplitude statistics and S-V clustering multipath channel parameters of the UWB channel with bandwidth from 3 to 10 GHz.]

Purpose:[Contribution towards the IEEE 802.15.4a Channel Modeling Subgroup.]

Notice:This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release:The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Chia-Chin Chong, Samsung (SAIT)


Uwb channel model for indoor residential environment

UWB Channel Model for Indoor Residential Environment

Chia-Chin Chong, Youngeil Kim, SeongSoo Lee

Samsung Advanced Institute of Technology (SAIT), Korea

Chia-Chin Chong, Samsung (SAIT)


Outline

Outline

  • Measurement Setup & Environment

  • Data Analysis & Post-Processing

  • Measurement Results

  • Large-Scale Parameters

  • Small-Scale Parameters

  • Conclusion

Chia-Chin Chong, Samsung (SAIT)


Measurement setup 1

Measurement Setup (1)

  • Frequency domain technique using VNA

    • Center frequency, fc : 6.5GHz

    • Bandwidth, B : 7GHz (i.e. 3-10GHz)

    • Delay resolution,  : 142.9ps (i.e. =1/B)

    • No. frequency points, N : 1601

    • Frequency step, f : 4.375MHz (i.e. f=B/(N-1))

    • Max. excess delay, max : 229.6ns (i.e. max=1/f)

    • Sweeping time, tsw : 800ms

    • Max. Doppler shift, fd,max : 1.25Hz (i.e. fd,max=1/tsw)

Chia-Chin Chong, Samsung (SAIT)


Measurement setup 2

Measurement Setup (2)

  • UWB planar dipole antennas

  • Measurement controlled by laptop with LabVIEW via GPIB interface

  • Calibration performed in an anechoic chamber with 1m reference separation

  • Static environment during recording

  • Both large-scale & small-scale measurements

    • Large-scale: different RX positions  “local point”

    • Small-scale: 25 (5x5) grid-measurements around each local point  “spatial point”

    • At each spatial point, 30 time-snapshots of the channel complex frequency responses are recorded

Chia-Chin Chong, Samsung (SAIT)


Measurement setup 3

Measurement Setup (3)

Propagation Channel

RX antenna

TX antenna

Coaxial

Cables

Vector network analyzer

(Agilent 8722ES)

Low Noise Amplifier

(Miteq AFS5)

Power Amplifier

(Agilent 83020A)

Attenuator

(Agilent 8496B)

GPIB

Interface

Laptop with LabVIEW

Chia-Chin Chong, Samsung (SAIT)


Uwb planar dipole antenna

UWB Planar Dipole Antenna

Chia-Chin Chong, Samsung (SAIT)


Measurement environment

Measurement Environment

  • Measurements in various types of high-rise apartments based on several cities in Korea  typical types in Asia countries like Korea, Japan, Singapore, Hong Kong, etc.

    • 3-bedrooms (Apart1)

    • 4-bedrooms (Apart2)

  • Both LOS and NLOS configurations

  • TX-RX antennas:

    • Separations: up to 20m

    • Height: 1.25m (with ceiling height of 2.5m)

    • TX antenna: always fixed in the center of the living room

    • RX antenna: moved around the apartment (i.e. 8-10 locations)

  • 12,000 channel complex frequency responses are collected (i.e. 2 apartments x 8 RX local points x 25 spatial points x 30 time snapshots  2x8x25x30=12,000)

Chia-Chin Chong, Samsung (SAIT)


3 bedroom apartment

3-Bedroom Apartment

Grid-Measurement

Chia-Chin Chong, Samsung (SAIT)


4 bedroom apartment

4-Bedroom Apartment

Chia-Chin Chong, Samsung (SAIT)


Data analysis post processing

Data Analysis & Post-Processing

  • All measurement data are calibrated with the calibration data measured in anechoic chamber to remove effect of measurement system

  • Perform frequency domain windowing to reduce the leakage problem

  • Complex passband IFFT is deployed to transform the complex frequency response to complex impulse response

  • Perform temporal domain binning before extract channel parameters

Chia-Chin Chong, Samsung (SAIT)


Channel model description

Channel Model Description

  • Large-Scale Parameters:

    • Path loss and Shadowing

    • Frequency Decaying Factor

  • Small-Scale Parameters:

    • Temporal Domain Parameters

    • S-V Multipath Channel Parameters

    • Small-Scale Amplitude Statistics

Chia-Chin Chong, Samsung (SAIT)


Path loss and shadowing

Path Loss and Shadowing

  • Path loss (PL) vs. Distance (d):

    • d0 = 1m

    • PL0 : intercept

    • n : path loss exponent

    • S : Shadowing fading parameter

  • Perform linear regression to the above equation with measured data to extract the required parameters

Chia-Chin Chong, Samsung (SAIT)


Path loss vs distance los

Path Loss vs. Distance – LOS

Chia-Chin Chong, Samsung (SAIT)


Path loss vs distance nlos

Path Loss vs. Distance – NLOS

Chia-Chin Chong, Samsung (SAIT)


Frequency decaying factor

Frequency Decaying Factor

  • Path loss (PL) vs. Frequency (f):

    or

(Method 1)

(Method 2)

Chia-Chin Chong, Samsung (SAIT)


Frequency decaying factor los

Frequency Decaying Factor – LOS

Chia-Chin Chong, Samsung (SAIT)


Frequency decaying factor nlos

Frequency Decaying Factor – NLOS

Chia-Chin Chong, Samsung (SAIT)


Large scale parameters

Large-Scale Parameters

Chia-Chin Chong, Samsung (SAIT)


Temporal domain parameters

Temporal Domain Parameters

  • These parameters were obtained after taking frequency domain Hamming windowing, passband IFFT & temporal domainbinning

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel 1

S-V Multipath Channel (1)

  • Saleh-Valenzuela (S-V) channel model is given by

    • L : number of clusters lth cluster

    • Kl: number of MPCs within the

    • ak,l : multipath gain coefficent of the kth component in lth cluster

    • Tl : delay of the lth cluster

    • k,l : delay of the kth MPC relative to the to the lth cluster arrival time

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel 2

S-V Multipath Channel (2)

  • Cluster arrival times Poisson distribution

  • Ray arrival times Poisson distribution

    •  : mean cluster arrival rate

    •  : mean ray arrival rate

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel 3

S-V Multipath Channel (3)

  • Average power of a MPC at a given delay, Tl + k,l

    • : expected value of the power of the first arriving MPC

    •  : cluster decay factor

    •  : ray decay factor

Chia-Chin Chong, Samsung (SAIT)


Cluster decay factor los

Cluster Decay Factor,  – LOS

Chia-Chin Chong, Samsung (SAIT)


Cluster decay factor nlos

Cluster Decay Factor,  – NLOS

Chia-Chin Chong, Samsung (SAIT)


Ray decay factor los

Ray Decay Factor,  – LOS

Chia-Chin Chong, Samsung (SAIT)


Ray decay factor nlos

Ray Decay Factor,  – NLOS

Chia-Chin Chong, Samsung (SAIT)


Cluster arrival rate los

Cluster Arrival Rate,  – LOS

Chia-Chin Chong, Samsung (SAIT)


Cluster arrival rate nlos

Cluster Arrival Rate,  – NLOS

Chia-Chin Chong, Samsung (SAIT)


Ray arrival rate los

Ray Arrival Rate,  – LOS

Chia-Chin Chong, Samsung (SAIT)


Ray arrival rate nlos

Ray Arrival Rate,  – NLOS

Chia-Chin Chong, Samsung (SAIT)


Mixture poisson distribution

Mixture Poisson Distribution

  • Fitting the ray arrival times to a mixture of 2 Poisson distributions similar to [1]:

    • : mixture probability

    • 1 & 2: ray arrival rates

Chia-Chin Chong, Samsung (SAIT)


Mixture poisson distributions los

Mixture Poisson Distributions – LOS

Chia-Chin Chong, Samsung (SAIT)


Mixture poisson distributions nlos

Mixture Poisson Distributions – NLOS

Chia-Chin Chong, Samsung (SAIT)


Number of clusters

Number of Clusters

Chia-Chin Chong, Samsung (SAIT)


Number of mpcs per cluster

Number of MPCs per Cluster

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel parameters

S-V Multipath Channel Parameters

Chia-Chin Chong, Samsung (SAIT)


Small scale amplitude statistics

Small-Scale Amplitude Statistics

  • Comparison of empirical path amplitude distribution with the following five commonly used theoretical distributions:

    • Lognormal

    • Nakagami

    • Rayleigh

    • Ricean

    • Weibull

  • The goodness-of-fit of the received signal amplitudes is evaluated using Kolmogorov-Smirnov (K-S) test & Chi-Square (2) test with 5% and 10% significance level, respectively.

Chia-Chin Chong, Samsung (SAIT)


Goodness of test los

Goodness-of-Test: LOS

Chia-Chin Chong, Samsung (SAIT)


Goodness of test nlos

Goodness-of-Test: NLOS

Chia-Chin Chong, Samsung (SAIT)


Cdf of path amplitude los

CDF of Path Amplitude – LOS

Chia-Chin Chong, Samsung (SAIT)


Cdf of path amplitude nlos

CDF of Path Amplitude – NLOS

Chia-Chin Chong, Samsung (SAIT)


Small scale amplitude statistics parameters

Small-Scale Amplitude Statistics Parameters

  • The results demonstrate that lognormal, Nakagami and Weibull fit the measurement data well.

  • Parameters of these distributions (i.e. standard deviation of lognormal PDF, m-parameter of Nakagami PDF and b-shape parameter of Weibull PDF) can be modeled by a lognormal distribution, respectively

  • These parameters are almost constant across the excess delay

Chia-Chin Chong, Samsung (SAIT)


Standard deviation of lognormal pdf los

Standard Deviation of Lognormal PDF – LOS

Chia-Chin Chong, Samsung (SAIT)


Standard deviation of lognormal pdf nlos

Standard Deviation of Lognormal PDF – NLOS

Chia-Chin Chong, Samsung (SAIT)


M nakagami parameter los

m-Nakagami Parameter – LOS

Chia-Chin Chong, Samsung (SAIT)


M nakagami parameter nlos

m-Nakagami Parameter – NLOS

Chia-Chin Chong, Samsung (SAIT)


B weibull parameter los

b-Weibull Parameter – LOS

Chia-Chin Chong, Samsung (SAIT)


B weibull parameter nlos

b-Weibull Parameter – NLOS

Chia-Chin Chong, Samsung (SAIT)


Variations of lognormal with delay los

Variations of Lognormal- with Delay – LOS

Chia-Chin Chong, Samsung (SAIT)


Variations of lognormal with delay nlos

Variations of Lognormal- with Delay – NLOS

Chia-Chin Chong, Samsung (SAIT)


Variations of nakagami m with delay los

Variations of Nakagami-m with Delay – LOS

Chia-Chin Chong, Samsung (SAIT)


Variations of nakagami m with delay nlos

Variations of Nakagami-m with Delay – NLOS

Chia-Chin Chong, Samsung (SAIT)


Variations of weibull b with delay los

Variations of Weibull-b with Delay – LOS

Chia-Chin Chong, Samsung (SAIT)


Variations of weibull b with delay nlos

Variations of Weibull-b with Delay – NLOS

Chia-Chin Chong, Samsung (SAIT)


Small scale amplitude statistics parameters1

Small-Scale Amplitude Statistics Parameters

Chia-Chin Chong, Samsung (SAIT)


Conclusion

Conclusion

  • Frequency domain technique UWB measurement campaign has been carried out in indoor residential environment (high-rise apartments) covering frequencies from 3-10 GHz.

  • Measurement covered both LOS & NLOS scenarios.

  • Channel measurement results and parameters which characterize both the large-scale and small-scale parameters of the channel are reported.

Chia-Chin Chong, Samsung (SAIT)


Reference

Reference

  • B. Kannan et. al., “Characterization of UWB Channels: Small-Scale Parameters for Indoor and Outdoor Office Environment,” IEEE 802.15-04-0385-00-04a, July 2004.

Chia-Chin Chong, Samsung (SAIT)


  • Login