Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
Download
1 / 58

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) - PowerPoint PPT Presentation


  • 65 Views
  • Uploaded on

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [ UWB Channel Model for Indoor Residential Environment ] Date Submitted: [16 September, 2004 ] Source: [ Chia-Chin Chong, Youngeil Kim, SeongSoo Lee ]

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)' - pancho


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [UWB Channel Model for Indoor Residential Environment]

Date Submitted: [16 September, 2004]

Source: [Chia-Chin Chong, Youngeil Kim, SeongSoo Lee]

Company [Samsung Advanced Institute of Technology (SAIT)]

Address [RF Technology Group, Comm. & Networking Lab., P. O. Box 111, Suwon 440-600, Korea.]

Voice:[+82-31-280-6865], FAX: [+82-31-280-9555], E-Mail: [[email protected]]

Re: [Response to Call for Contributions on IEEE 802.15.4a Channel Models]

Abstract: [This contribution describes the UWB channel measurement results in indoor residential environment based in several types of high-rise apartments. It consists of detailed characterization of both the large-scale and small-scale parameters of the channel such as frequency-domain parameters, temporal-domain parameters, small-scale amplitude statistics and S-V clustering multipath channel parameters of the UWB channel with bandwidth from 3 to 10 GHz.]

Purpose: [Contribution towards the IEEE 802.15.4a Channel Modeling Subgroup.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Chia-Chin Chong, Samsung (SAIT)


Uwb channel model for indoor residential environment

UWB Channel Model for Indoor Residential Environment Area Networks (WPANs)

Chia-Chin Chong, Youngeil Kim, SeongSoo Lee

Samsung Advanced Institute of Technology (SAIT), Korea

Chia-Chin Chong, Samsung (SAIT)


Outline
Outline Area Networks (WPANs)

  • Measurement Setup & Environment

  • Data Analysis & Post-Processing

  • Measurement Results

  • Large-Scale Parameters

  • Small-Scale Parameters

  • Conclusion

Chia-Chin Chong, Samsung (SAIT)


Measurement setup 1
Measurement Setup (1) Area Networks (WPANs)

  • Frequency domain technique using VNA

    • Center frequency, fc : 6.5GHz

    • Bandwidth, B : 7GHz (i.e. 3-10GHz)

    • Delay resolution,  : 142.9ps (i.e. =1/B)

    • No. frequency points, N : 1601

    • Frequency step, f : 4.375MHz (i.e. f=B/(N-1))

    • Max. excess delay, max : 229.6ns (i.e. max=1/f)

    • Sweeping time, tsw : 800ms

    • Max. Doppler shift, fd,max : 1.25Hz (i.e. fd,max=1/tsw)

Chia-Chin Chong, Samsung (SAIT)


Measurement setup 2
Measurement Setup (2) Area Networks (WPANs)

  • UWB planar dipole antennas

  • Measurement controlled by laptop with LabVIEW via GPIB interface

  • Calibration performed in an anechoic chamber with 1m reference separation

  • Static environment during recording

  • Both large-scale & small-scale measurements

    • Large-scale: different RX positions  “local point”

    • Small-scale: 25 (5x5) grid-measurements around each local point  “spatial point”

    • At each spatial point, 30 time-snapshots of the channel complex frequency responses are recorded

Chia-Chin Chong, Samsung (SAIT)


Measurement setup 3
Measurement Setup (3) Area Networks (WPANs)

Propagation Channel

RX antenna

TX antenna

Coaxial

Cables

Vector network analyzer

(Agilent 8722ES)

Low Noise Amplifier

(Miteq AFS5)

Power Amplifier

(Agilent 83020A)

Attenuator

(Agilent 8496B)

GPIB

Interface

Laptop with LabVIEW

Chia-Chin Chong, Samsung (SAIT)


Uwb planar dipole antenna
UWB Planar Dipole Antenna Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Measurement environment
Measurement Environment Area Networks (WPANs)

  • Measurements in various types of high-rise apartments based on several cities in Korea  typical types in Asia countries like Korea, Japan, Singapore, Hong Kong, etc.

    • 3-bedrooms (Apart1)

    • 4-bedrooms (Apart2)

  • Both LOS and NLOS configurations

  • TX-RX antennas:

    • Separations: up to 20m

    • Height: 1.25m (with ceiling height of 2.5m)

    • TX antenna: always fixed in the center of the living room

    • RX antenna: moved around the apartment (i.e. 8-10 locations)

  • 12,000 channel complex frequency responses are collected (i.e. 2 apartments x 8 RX local points x 25 spatial points x 30 time snapshots  2x8x25x30=12,000)

Chia-Chin Chong, Samsung (SAIT)


3 bedroom apartment
3-Bedroom Apartment Area Networks (WPANs)

Grid-Measurement

Chia-Chin Chong, Samsung (SAIT)


4 bedroom apartment
4-Bedroom Apartment Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Data analysis post processing
Data Analysis & Post-Processing Area Networks (WPANs)

  • All measurement data are calibrated with the calibration data measured in anechoic chamber to remove effect of measurement system

  • Perform frequency domain windowing to reduce the leakage problem

  • Complex passband IFFT is deployed to transform the complex frequency response to complex impulse response

  • Perform temporal domain binning before extract channel parameters

Chia-Chin Chong, Samsung (SAIT)


Channel model description
Channel Model Description Area Networks (WPANs)

  • Large-Scale Parameters:

    • Path loss and Shadowing

    • Frequency Decaying Factor

  • Small-Scale Parameters:

    • Temporal Domain Parameters

    • S-V Multipath Channel Parameters

    • Small-Scale Amplitude Statistics

Chia-Chin Chong, Samsung (SAIT)


Path loss and shadowing
Path Loss and Shadowing Area Networks (WPANs)

  • Path loss (PL) vs. Distance (d):

    • d0 = 1m

    • PL0 : intercept

    • n : path loss exponent

    • S : Shadowing fading parameter

  • Perform linear regression to the above equation with measured data to extract the required parameters

Chia-Chin Chong, Samsung (SAIT)


Path loss vs distance los
Path Loss vs. Distance – LOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Path loss vs distance nlos
Path Loss vs. Distance – NLOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Frequency decaying factor
Frequency Decaying Factor Area Networks (WPANs)

  • Path loss (PL) vs. Frequency (f):

    or

(Method 1)

(Method 2)

Chia-Chin Chong, Samsung (SAIT)


Frequency decaying factor los
Frequency Decaying Factor – LOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Frequency decaying factor nlos
Frequency Decaying Factor – NLOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Large scale parameters
Large-Scale Parameters Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Temporal domain parameters
Temporal Domain Parameters Area Networks (WPANs)

  • These parameters were obtained after taking frequency domain Hamming windowing, passband IFFT & temporal domainbinning

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel 1
S-V Multipath Channel (1) Area Networks (WPANs)

  • Saleh-Valenzuela (S-V) channel model is given by

    • L : number of clusters lth cluster

    • Kl: number of MPCs within the

    • ak,l : multipath gain coefficent of the kth component in lth cluster

    • Tl : delay of the lth cluster

    • k,l : delay of the kth MPC relative to the to the lth cluster arrival time

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel 2
S-V Multipath Channel (2) Area Networks (WPANs)

  • Cluster arrival times Poisson distribution

  • Ray arrival times Poisson distribution

    •  : mean cluster arrival rate

    •  : mean ray arrival rate

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel 3
S-V Multipath Channel (3) Area Networks (WPANs)

  • Average power of a MPC at a given delay, Tl + k,l

    • : expected value of the power of the first arriving MPC

    •  : cluster decay factor

    •  : ray decay factor

Chia-Chin Chong, Samsung (SAIT)


Cluster decay factor los
Cluster Decay Factor, Area Networks (WPANs) – LOS

Chia-Chin Chong, Samsung (SAIT)


Cluster decay factor nlos
Cluster Decay Factor, Area Networks (WPANs) – NLOS

Chia-Chin Chong, Samsung (SAIT)


Ray decay factor los
Ray Decay Factor, Area Networks (WPANs) – LOS

Chia-Chin Chong, Samsung (SAIT)


Ray decay factor nlos
Ray Decay Factor, Area Networks (WPANs) – NLOS

Chia-Chin Chong, Samsung (SAIT)


Cluster arrival rate los
Cluster Arrival Rate, Area Networks (WPANs) – LOS

Chia-Chin Chong, Samsung (SAIT)


Cluster arrival rate nlos
Cluster Arrival Rate, Area Networks (WPANs) – NLOS

Chia-Chin Chong, Samsung (SAIT)


Ray arrival rate los
Ray Arrival Rate, Area Networks (WPANs) – LOS

Chia-Chin Chong, Samsung (SAIT)


Ray arrival rate nlos
Ray Arrival Rate, Area Networks (WPANs) – NLOS

Chia-Chin Chong, Samsung (SAIT)


Mixture poisson distribution
Mixture Poisson Distribution Area Networks (WPANs)

  • Fitting the ray arrival times to a mixture of 2 Poisson distributions similar to [1]:

    • : mixture probability

    • 1 & 2: ray arrival rates

Chia-Chin Chong, Samsung (SAIT)


Mixture poisson distributions los
Mixture Poisson Distributions – LOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Mixture poisson distributions nlos
Mixture Poisson Distributions – NLOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Number of clusters
Number of Clusters Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Number of mpcs per cluster
Number of MPCs per Cluster Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


S v multipath channel parameters
S-V Multipath Channel Parameters Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Small scale amplitude statistics
Small-Scale Amplitude Statistics Area Networks (WPANs)

  • Comparison of empirical path amplitude distribution with the following five commonly used theoretical distributions:

    • Lognormal

    • Nakagami

    • Rayleigh

    • Ricean

    • Weibull

  • The goodness-of-fit of the received signal amplitudes is evaluated using Kolmogorov-Smirnov (K-S) test & Chi-Square (2) test with 5% and 10% significance level, respectively.

Chia-Chin Chong, Samsung (SAIT)


Goodness of test los
Goodness-of-Test: LOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Goodness of test nlos
Goodness-of-Test: NLOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Cdf of path amplitude los
CDF of Path Amplitude – LOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Cdf of path amplitude nlos
CDF of Path Amplitude – NLOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Small scale amplitude statistics parameters
Small-Scale Amplitude Statistics Parameters Area Networks (WPANs)

  • The results demonstrate that lognormal, Nakagami and Weibull fit the measurement data well.

  • Parameters of these distributions (i.e. standard deviation of lognormal PDF, m-parameter of Nakagami PDF and b-shape parameter of Weibull PDF) can be modeled by a lognormal distribution, respectively

  • These parameters are almost constant across the excess delay

Chia-Chin Chong, Samsung (SAIT)


Standard deviation of lognormal pdf los
Standard Deviation of Lognormal PDF – LOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Standard deviation of lognormal pdf nlos
Standard Deviation of Lognormal PDF – NLOS Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


M nakagami parameter los
m Area Networks (WPANs)-Nakagami Parameter – LOS

Chia-Chin Chong, Samsung (SAIT)


M nakagami parameter nlos
m Area Networks (WPANs)-Nakagami Parameter – NLOS

Chia-Chin Chong, Samsung (SAIT)


B weibull parameter los
b Area Networks (WPANs)-Weibull Parameter – LOS

Chia-Chin Chong, Samsung (SAIT)


B weibull parameter nlos
b Area Networks (WPANs)-Weibull Parameter – NLOS

Chia-Chin Chong, Samsung (SAIT)


Variations of lognormal with delay los
Variations of Lognormal- Area Networks (WPANs) with Delay – LOS

Chia-Chin Chong, Samsung (SAIT)


Variations of lognormal with delay nlos
Variations of Lognormal- Area Networks (WPANs) with Delay – NLOS

Chia-Chin Chong, Samsung (SAIT)


Variations of nakagami m with delay los
Variations of Nakagami- Area Networks (WPANs)m with Delay – LOS

Chia-Chin Chong, Samsung (SAIT)


Variations of nakagami m with delay nlos
Variations of Nakagami- Area Networks (WPANs)m with Delay – NLOS

Chia-Chin Chong, Samsung (SAIT)


Variations of weibull b with delay los
Variations of Weibull- Area Networks (WPANs)b with Delay – LOS

Chia-Chin Chong, Samsung (SAIT)


Variations of weibull b with delay nlos
Variations of Weibull- Area Networks (WPANs)b with Delay – NLOS

Chia-Chin Chong, Samsung (SAIT)


Small scale amplitude statistics parameters1
Small-Scale Amplitude Statistics Parameters Area Networks (WPANs)

Chia-Chin Chong, Samsung (SAIT)


Conclusion
Conclusion Area Networks (WPANs)

  • Frequency domain technique UWB measurement campaign has been carried out in indoor residential environment (high-rise apartments) covering frequencies from 3-10 GHz.

  • Measurement covered both LOS & NLOS scenarios.

  • Channel measurement results and parameters which characterize both the large-scale and small-scale parameters of the channel are reported.

Chia-Chin Chong, Samsung (SAIT)


Reference
Reference Area Networks (WPANs)

  • B. Kannan et. al., “Characterization of UWB Channels: Small-Scale Parameters for Indoor and Outdoor Office Environment,” IEEE 802.15-04-0385-00-04a, July 2004.

Chia-Chin Chong, Samsung (SAIT)


ad