1 / 10

# Applying Sinusoidal Graphs to different situations - PowerPoint PPT Presentation

Applying Sinusoidal Graphs to different situations. There are many potential situations that could be modelled with periodic graphs. Example: Phases of the moon Tides Windmills Water wheels Ferris Wheels Bike tires Heartbeats Swings Builidings Swaying. Interpreting meaning.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Applying Sinusoidal Graphs to different situations' - oriole

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Applying Sinusoidal Graphs to different situations

There are many potential situations that could be modelled with periodic graphs

• Example:

Phases of the moon

Tides

Windmills

Water wheels

Ferris Wheels

Bike tires

Heartbeats

Swings

Builidings Swaying

Interpreting meaning with periodic graphs

• It is important to be able to assign meaning to the different things we observe in a repetitive pattern.

• Let’s look at an example

• Textbook: Pg 376 #20

A good question with periodic graphs

Example cont.. with periodic graphs

The equation of the axis is h=8

It represents the height of the axle of the windmill.

The axle is like the hub at the centre of the windmill around which the blades rotate.

Axle

cont with periodic graphs

The amplitude is 6 metres

It represents the length of the windmill blade.

Cont.. with periodic graphs

The period of the graph is 18 seconds

It represents the amount of time it takes for the windmill blades to complete a full revolution.

Cont.. with periodic graphs

d) What sort of problems might we run into in trying to figure this out?

Is it possible to figure this out.

d) Given what we know so far it is possible to make the kind of transformation necessary to answer this?

e)What will be the “a”, “c” and “d” values?

e)We will have to modify our equation so that it won’t quite be totally accurate

Cont with periodic graphs

f) Would the affect be on a, c, or d?

f) How might the graph change in general?

The answer is that it will affect the period of the graph.

It will make the period of the graph longer because a slower wind speed means it will take a greater amount of time for one cycle to be completed.

cont with periodic graphs

It would mean that the equation of the axis would be higher.

The new equation of the axis would be h=9