Practical considerations for air monitoring with emphasis on direct reading real time monitors
Download
1 / 38

Practical Considerations For Air Monitoring With Emphasis On ... - PowerPoint PPT Presentation


  • 281 Views
  • Uploaded on

Practical Considerations For Air Monitoring With Emphasis On Direct Reading Real Time Monitors. Occupational Hygiene Association of Ontario Spring Symposium By: Jamie Prince B.Sc, OHST, ROHT General Motors of Canada Limited. OUTLINE. What Can Be Measured Sampling Strategies

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Practical Considerations For Air Monitoring With Emphasis On ...' - omer


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Practical considerations for air monitoring with emphasis on direct reading real time monitors l.jpg

Practical Considerations For Air Monitoring With Emphasis On Direct Reading Real Time Monitors

Occupational Hygiene Association of Ontario Spring Symposium

By: Jamie Prince B.Sc, OHST, ROHT

General Motors of Canada Limited


Outline l.jpg
OUTLINE Direct Reading Real Time Monitors

  • What Can Be Measured

  • Sampling Strategies

  • Types of Sampling Equipment

  • Examples of Real Time Monitors

  • Advantages/Disadvantages of Real Time Air Monitoring

  • Real Time Air Monitoring Examples

  • Conclusions


Physical chemical states l.jpg
PHYSICAL/CHEMICAL Direct Reading Real Time MonitorsSTATES

  • solids: dust, fibres, fume, smoke

  • liquids: mist, aerosols

  • gases: vapours

    remember:

    gas

    solid liquid


7 types of contaminants l.jpg
7 TYPES OF CONTAMINANTS Direct Reading Real Time Monitors

  • Dusts- airborne solid particles ranging in size from 0.1 to 25 microns. Particles 5 microns and larger don’t usually remain airborne to present an inhalation hazard.

  • Fumes- material from a volatized solid condenses in cool air. Size of the particulate formed are less than 1 micron in diameter.

  • Smoke- from incomplete combustion of carbon containing materials, its made up of carbon or soot particles. Can vary in size.


7 types of contaminants5 l.jpg
7 TYPES OF CONTAMINANTS Direct Reading Real Time Monitors

  • Aerosols- liquid droplets or solid particles, fine enough to remain dispersed in air for a prolonged period.

  • Mists- liquid droplets suspended in the atmosphere.

  • Gases- are “formless fluids” that expand to fill the space or enclosure in which they are confined.

  • Vapours- are the volatile form of substances that are usually in the liquid or solid state at room temperature and pressure.


Physical chemical states6 l.jpg
PHYSICAL/CHEMICAL STATES Direct Reading Real Time Monitors

  • size: respirable (less than 10 μm) fibres (length & diameter)

  • chemical charge (CrIII or CrVI)

  • solubility (Ni)

  • crystal structure (silica, talc)

  • fibrous or non-fibrous

  • polar/non polar


Mixtures l.jpg
MIXTURES Direct Reading Real Time Monitors

  • decomposition products (smoke, etc.) often have thousands of components

  • sometimes “marker” substances measured (like CO)

    • if a “marker” is used, the TWAEV for the marker substance is not applicable!

  • can be sampled as a group (e.g. VOC’s), but usually no TWAEV


Mixtures8 l.jpg
MIXTURES Direct Reading Real Time Monitors

  • Measuring each of the thousands of constituents in decomposition products would be a chemist’s nightmare

  • almost all of the constituents will be well below individual TWAEV’s

  • even summing the TWAEV’s seldom exceeds summed TWAEV criteria

  • Combinations:

    • Vapour condensing on particles

    • vapour absorbed by liquid aerosols

    • liquid evaporating from aerosol/particulate


So you want to sample l.jpg
SO YOU WANT TO SAMPLE? Direct Reading Real Time Monitors

Then answer the 5 W’s and 3 H’s:

  • Why?

  • What?

  • Who?

  • When?

  • Where?

  • How?

  • How many?

  • How long?


Sampling strategies why l.jpg
SAMPLING STRATEGIES Direct Reading Real Time MonitorsWHY?

  • Reactive Sampling, Source Identification -Employee Concerns: What’s causing the complaints/symptoms

  • Compliance Sampling, New Process, DSR

  • Proactive Sampling

  • Engineering Control Verification


Alternatives to sampling l.jpg
ALTERNATIVES TO SAMPLING Direct Reading Real Time Monitors

  • Eliminate the source

  • Add engineering controls

  • Use odour and irritation thresholds

  • Hazard mapping, use employee experiences

  • Computer modelling


Exposure continuum l.jpg
EXPOSURE CONTINUUM Direct Reading Real Time Monitors

source > path > exposure > uptake > target

Try to move as far to the left of the continuum as possible (prevention!)

  • Source: substitution, enclosure

  • Path: ventilation evaluation, work practices

  • Exposure: IH measurements

  • Uptake: symptoms, blood/urine samples

  • Target: clinical tests, diagnosis


Sampling strategies what l.jpg
SAMPLING STRATEGIES Direct Reading Real Time MonitorsWHAT?

  • Type: bulk, area, personal

  • Time: short term (CEV, STEV), long term (TWAEV), sequential, grab (series)

  • Method: “quick and dirty” (colourimetric), direct reading real time, official (NIOSH etc)

  • Conditions: worst case, random (unbiased), staged (simulated), regular work shift.

  • Number: “one shot”, statistically representative, cumulative exposures


Who when where l.jpg
WHO WHEN WHERE? Direct Reading Real Time Monitors

What workplace variables cause exposures to go up or down?

  • weather (season, temp, humidity, wind)

  • doors & windows, cross drafts

  • shift, production schedules, rates

  • ventilation in other areas of plant

  • housekeeping, traffic, activity levels

  • individual work practices, man cooling fans


Sampling conditions l.jpg
SAMPLING CONDITIONS Direct Reading Real Time Monitors

  • make sure important variables are addressed in strategy

  • keep records of conditions during sampling

    • start & finish times

    • production levels

    • ventilation (doors, windows, local & general)

    • workers’ opinion if sampling period is representative of better than average, normal, worse than normal conditions


How types of sampling equipment l.jpg
HOW? Direct Reading Real Time MonitorsTYPES OF SAMPLING EQUIPMENT

  • Colourimetric (Draeger tubes, dositubes)

  • Passive Absorption Badges: Organic Vapours, formaldehyde, other gases and vapours

  • Pumps:

    • filter cassettes (with or without cyclones or impacters) for particulates, aerosols and fibers

    • sorbent tubes, (charcoal, silica gel, specialized) for gases and vapours.

    • Liquid samplers (impingers) for vapours, particulates, aerosols


Types of real time air monitors l.jpg
TYPES OF REAL TIME AIR MONITORS Direct Reading Real Time Monitors

  • Particulates

    • Total particulates/aerosols (data-logging): DataRam, Dust Trak

    • Fibers: FAM (Fibrous Aerosol Monitor) asbestos

  • Gases/Vapours

    • FID and PID (data-logging) for organic compounds

    • Inorganic gases and vapours, CO, CO2, mercury, H2S

    • Paper Tape for isocyanates

    • Lead Niton X-ray fluorescence

    • Indoor Air Quality multi-function monitors


How many l.jpg
HOW MANY? Direct Reading Real Time Monitors

How Many Samples Do You Need To Take?

  • Compliance sampling needs a large number of representative samples over a long period of time

    • use traditional sampling methods

  • Worst case sampling may require only a few samples over a short period

    • direct reading or real time may be required

  • Type of hazard may determine how many and for how long

    • peak exposures, length of peaks, short term acute hazards, does it come and go


How long l.jpg
HOW LONG? Direct Reading Real Time Monitors

  • Lowest detectable quantity

  • Don’t overload sample media

  • Short sample period for acute hazards

  • Chronic hazard may need full shift

  • Peaks need data-logging, real time direct reading or short term sequential samples

  • IDLH for confined space needs immediate answer

  • Leak detection needs direct reading


Disadvantages of long term sampling l.jpg
DISADVANTAGES OF LONG TERM SAMPLING Direct Reading Real Time Monitors

  • Analysis and Feedback time too long, chance of exposing employees to hazardous levels

  • Inability to answer employee concerns, continued refusal to work, loss of production

  • Inability to Determine STEL and Ceiling Values, ie. short term maintenance jobs

  • 90% of all long term samples were less than 10% of any EEG, however employees continued to complain, especially of irritation

  • Ineffective use of Hygienist’s time


Advantages of real time l.jpg
ADVANTAGES OF REAL TIME Direct Reading Real Time Monitors

  • Instant feedback of exposure levels to hygienist and employees, ease of mind

  • Employee trust, can see exposure on meter

  • Ability to determine time vs concentration with data-logging instruments

  • Ability to determine STEL and Ceiling Values

  • Quick determination of how changes to process or engineering controls affect employee exposures

  • More efficient use of hygienist’s time


Disadvantages of real time air monitors l.jpg
DISADVANTAGES OF REAL TIME AIR MONITORS Direct Reading Real Time Monitors

  • Specificity of monitor

  • Interpretation of results, employee misunderstanding

  • Interferences, CO, TOHC’s , Water Vapour

  • Method may not be accepted by Government

  • Difficult or unable to Calibrate

  • Assuming dust monitor detects all particle sizes equally well

  • Cannot usually be used for compliance sampling, lead, isocyanates, silica, asbestos

  • Accuracy


Real time instruments l.jpg
REAL TIME INSTRUMENTS Direct Reading Real Time Monitors

  • CENTURY SYSTEMS OVA TOHC

  • RIKIN 411 CO2 MONITOR

  • DRAEGER CO DATALOGGER

  • MINIRAM, TP

  • DATARAM TP DATALOGGER

  • REUTER STOKES WIBGET

  • GMD AUTOSTEP (CAP) ISOCYANATES

  • TOXIRAE PID TOHC’S

  • SOLOMAT IAQ MONITOR


Sealer removal solvent l.jpg
SEALER REMOVAL SOLVENT Direct Reading Real Time Monitors

INSTRUMENT- CENTURY SYSTEMS OVA

  • Sealer removal from car in open area

  • which solvent had lowest exposure levels

  • FP and VP not useful

    • solvent 1- 35-40 ppm peaks TWA 100 ppm

    • solvent 2--50-60 ppm peaks TWA 100 ppm

    • solvent 3--35-40 ppm peaks TWA 100 ppm

    • solvent 4--20-30 ppm peaks TWA 100 ppm

    • solvent 5---85-100 ppm peaks TWA 400 ppm

  • Solvent 4 or 5 recommended

  • Solvent 4 chosen because of higher FP


Flat top co l.jpg
FLAT TOP CO Direct Reading Real Time Monitors

INSTRUMENT- DRAEGER CO DATALOGGER

  • CO buildup suspected for new driving and parking procedures on flat top conveyor

    • CO levels data-logged in various areas ventilation on and off

    • CO levels data-logged while different procedures were used for idling cars while parked

  • Determined that new procedures did increase CO to hazardous levels in one area.

  • Immediate ventilation system changes reduced maximum CO levels to non hazardous levels


Coast clutch blowoff l.jpg
COAST CLUTCH BLOWOFF Direct Reading Real Time Monitors

INSTRUMENT-DATARAM AEROSOL MONITOR

  • Using compressed air to blow off and clean Transmission parts. Does ventilated box and lower air pressure reduce exposures.

    • Total particulates data-logged while blowing off parts in general work area

    • TP’s data-logged with part held in ventilated box

  • Determined box increased exposures since exhaust in box too low, and blow back

  • Lower air pressure decreased exposures


Black prime l.jpg
BLACK PRIME Direct Reading Real Time Monitors

INSTRUMENT-CENTURY SYSTEMS OVA

  • Black prime with MEK applied to window openings on ventilated ramp, employees complain of irritation and odours

  • How did casablanca fan speed and application method affect exposures

    • MEK levels taken in BZ and general area with fans on high 3X higher than fans on low

    • MEK peak levels taken In BZ while leaning over applied prime 4X higher than when furthest part of window was primed first

  • Set fans to low speed, disabled rheostats

  • Rec’d not to lean over applied prime


Paint spraying l.jpg
PAINT SPRAYING Direct Reading Real Time Monitors

INSTRUMENT- CENTURY SYSTEMS OVA

  • Employees paint spraying rear of vehicle

  • Long term test showed paint solvent exposures <5 ppm, but employees continued to complain of irritation and odours

    • sampled BZ while spraying across from each other, found peaks of 200 ppm TOHC from overspray

    • sampled BZ while staggering their spraying, found peaks below 10 ppm

  • Recommended that paint sprayers in all booths stagger their paint spraying


Metal working fluids l.jpg
METAL WORKING FLUIDS Direct Reading Real Time Monitors

INSTRUMENT- MINIRAM AEROSOL MONITOR

  • Employees working on machining line complaining of irritation, all equipment ventilated

    • Miniram used to survey BZ and general work area

    • Levels in area rose slowly as machining progressed

    • followed plume of mist back to one faulty filter

    • after filter repaired, levels remained low

  • Recommended preventative maintenance on filters of ventilation equipment


Metal working fluids36 l.jpg
METAL WORKING FLUIDS Direct Reading Real Time Monitors

INSTRUMENT(S)- DATARAM AEROSOL MONITOR & TSI DUSTRAC

  • Total Particulate Levels Required to Determine Need For Engineering Controls

    • Total Particulate Mapping of Component Manufacturing Plants on a 6mX 6m Grid.

    • Results plotted on an Excel Spreadsheet. Chart of Exposure Levels (Contour) Printed on Overhead.

    • Contour Chart Overlaid on Plant Layout.

    • Areas of Higher Exposure Targeted for Improvement

    • Engineering Controls installed

    • Plant is Remapped to Determine Improvement


Conclusions l.jpg
Conclusions Direct Reading Real Time Monitors

  • Is sampling necessary, can the problem be solved another way?

  • Ensure your sampling strategy is right.

  • Real time air monitoring benefits include:

    • ability to determine patterns of exposure

    • ability to quickly evaluate engineering or process control changes

    • reasonably determine potential of exposure to cause adverse health effects

    • dollar savings from reduction of lab analysis and hygienist’s time being used more effectively


ad