Studying segmentation mutants in balanced stocks
This presentation is the property of its rightful owner.
Sponsored Links
1 / 38

Studying Segmentation Mutants in Balanced Stocks PowerPoint PPT Presentation


  • 56 Views
  • Uploaded on
  • Presentation posted in: General

Studying Segmentation Mutants in Balanced Stocks. Drosophila Development. Each egg is surrounded by a chorion . The anterior end has two filaments to allow oxygen to enter the cell. Sperm enter through the micropyle at the anterior end. Early Drosophila Development.

Download Presentation

Studying Segmentation Mutants in Balanced Stocks

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Studying segmentation mutants in balanced stocks

Studying Segmentation Mutants in Balanced Stocks


Drosophila development

Drosophila Development

  • Each egg is surrounded by a chorion.

  • The anterior end has two filaments to allow oxygen to enter the cell.

  • Sperm enter through the micropyle at the anterior end.


Early drosophila development

Early Drosophila Development

  • It takes 1 day for the embryo to develop into a larva.

  • The larva hatches, feeds, and sheds its skin twice.

  • After 5 days, the larva becomes immobile and forms a pupa.

  • During the pupal stage, cells in the imaginal discs differentiate into adult structures.


Maternal gene activity in development

Maternal Gene Activity in Development

Materials transported into the egg during oogenesis play a major role in embryonic development.


Maternal effect genes

Maternal-Effect Genes

  • Maternal-effect genes contribute to the formation of healthy eggs; effects of mutations in these genes may not affect the phenotype of the female making the eggs but may be seen in the next generation.

  • A maternal-effect mutation causes a mutant phenotype in the offspring of a female with a mutant genotype.


The dorsal gene offspring of dl dl females are dorsalized and inviable

The dorsal Gene:Offspring of dl/dl Females are Dorsalized and Inviable


Segmentation genes

Segmentation Genes

  • Segmentation genes are required for segmentation along the anterior-posterior axis.

  • They are classified into three groups based on embryonic mutant phenotypes.

    • Gap genes

    • Pair-rule genes

    • Segment-polarity genes


Gap genes

Gap Genes

  • Gap genes define segmental regions in the embryo.

  • Mutations in the gap genes cause a set of contiguous body segments to be missing.

  • Four gap genes have been well characterized: KrĂĽppel, giant, hunchback, and knirps.

  • Gap gene expression is controlled by bicoid and nanos.

  • The gap genes encode transcription factors.


Pair rule genes

Pair-Rule Genes

  • Pair-rule genes define a pattern of segments within the embryo.

  • Pair-rule genes are regulated by the gap genes and are expressed in seven alternating bands, dividing the embryo into 14 parasegments along the anterior-posterior axis.

  • In pair-rule mutants, every other parasegment is missing.

  • The pair-rule genes encode transcription factors.


Expression of fushi tarazu ftz in a drosophila blastoderm embryo

Expression of fushi tarazu (ftz) in a Drosophila Blastoderm Embryo


Segment polarity genes

Segment-Polarity Genes

  • Segment-polarity genes define the anterior and posterior compartments of individual segments.

  • Mutations in segment-polarity genes cause part of each segment to be replaced by a mirror-image copy of an adjoining half-segment.

  • Segment-polarity genes refine the segmental pattern established by the pair-rule genes.

  • These genes encode transcription factors and signaling molecules.


Segmentation gene mutants

Segmentation Gene Mutants


Chapter 21 the genetic control of animal development

Chapter 21The Genetic Control of Animal Development


Sex determination in drosophila and c elegans

Sex Determination in Drosophila and C. elegans

  • The sex determination signal in both animals is the ratio of X chromosomes to autosomes. If the ratio is 1.0 or greater, the animal is a female; if the ratio is 0.5 or less, the animal is a male.CLASSIC Definition

  • But wrong

  • In Drosophila, the key genes in sex determination encode proteins that regulate RNA processing.


Sex determination in drosophila

Sex Determination in Drosophila

  • Components of the sex-determination pathway include

    • A system to ascertain the X:A ratio ,

    • A system to covert this ratio into a developmental signal, and

    • A system to respond to this signal by producing either male or female structures.


Ascertaining the x a ratio

Ascertaining the X:A Ratio

  • The system that ascertains the X:A ratio involves interactions between maternally synthesized proteins in the egg cytoplasm and embryonically synthesized proteins encoded by several X-linked genes.

  • The X-linked gene products are called numerator elements and are twice as abundant in XX embryos as in XY embryos.

  • The autosomal gene products are called denominator elements and antagonize the products of the numerator elements.


The sex lethal sxl gene

The Sex-lethal (Sxl) Gene

  • Sxl is the mater regular of the sex determination pathway in Drosophila.

  • The X:A ratio is converted into a molecular signal that controls the expression of the X-linked Sxl gene.


Function of sxl

Function of SXL

  • SXL regulates splicing of its own transcript to maintain SXL protein expression in XX embryos.

  • SXL also regulates splicing of the transformer (tra) gene.


Differentiating in response to the signal

Differentiating in Response to the Signal

  • TRA, along with TRA2, regulate splicing of doublesex (dsx) and fruitless (fru).

  • In XX embryos, where TRA is present, dsx transcripts are processed to encode a DSX protein that represses the genes for male development.

  • In XY embryos, where TRA is absent, dsx transcripts are processed to encode a DSX protein that represses the genes for female development.


Fruitless fru

Fruitless (fru)

  • Males homozygous for the fru mutation court other males.

  • The fru gene encodes a zinc-finger transcription factor that regulates the genes for male sexual behavior.


Loss of function mutations in sex determination genes in drosophila

Loss-of-Function Mutations in Sex-Determination Genes in Drosophila

  • Mutations in Sxl prevent SXL protein from being made in males; homozygous mutants would develop into males but die as embryos.

  • Mutations in transformer and transformer2 cause both XX and XY animals to develop into males.

  • Mutations in dsx cause both XX and XY embryos to develop into intersexes.


Key points

Key Points

  • In Drosophila the pathway that controls sexual differentiation involves some genes that ascertain the X:A ratio, some that convert this ratio into a developmental signal, and others that respond to the signal by producing either male or female structures.

  • The Sex-lethal (Sxl) gene plays a key role in Drosophila sexual development by regulating the splicing of its own transcript and that of another gene (tra).


  • Login