1 / 41

Fabrizio Petrucci Dipartimento di Fisica “E.Amaldi” Università Roma TRE

Fabrizio Petrucci Dipartimento di Fisica “E.Amaldi” Università Roma TRE. Detection and tracking of muons in the ATLAS experiment at LHC: study for an online Z →μμ selection. Physics program at the Large Hadron Collider The ATLAS experiment at the LHC The muon spectrometer

oihane
Download Presentation

Fabrizio Petrucci Dipartimento di Fisica “E.Amaldi” Università Roma TRE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fabrizio Petrucci Dipartimento di Fisica “E.Amaldi” Università Roma TRE Detection and tracking of muons in the ATLAS experiment at LHC: study for an online Z→μμ selection • Physics program at the Large Hadron Collider • The ATLAS experiment at the LHC • The muon spectrometer • MDT : Operating principles • MDT Chambers : • Tracking in the experiment • Conclusions • production and test • tracking, autocalibratiom, resolution • fast tracking and momentum measurement • Z→μμ selection and luminosity measurement 1

  2. LHC Physics program at the Large Hadron Collider (LHC) The Standard Model describes accurately present data, but: • The Higgs mechanism of electroweak symmetry breaking (particle masses) has to be observed experimentally. Search for Higgs boson in the mass range 114 GeV < mH < 1 TeV. Lower limit set by direct search in previous experiments, upper limit set by the stability of the theory. Present data suggest mH < 200 GeV. • Experimental behaviour of the coupling constants suggest a possible unification (GUT) at an energy scale ΛGUT = 1014 – 1016 GeV. Higgs mass diverges quadratically with Λ (naturalness problem). → supersymmetric theories (MSSM) Search supersymmetric particles (Msusy > 100 GeV) and in particular study the Higgs sector in the MSSM pp collider CM energy : 14 TeV luminosity : 1034cm-2s-1 bunch crossing period : 25 ns. The ATLAS detector has been planned to fully exploit LHC potential. Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 2

  3. Higgs boson search: • Low mass range (mH < 130 GeV): • H → bb BR ~ 100% • b-jet tagging and invariant mass resolution • H → gg BR ~ 10-3 genergy and direction measurement High mass range (mH > 130 GeV): H → WW(*) , ZZ(*) (Z → ee, mm, jet - jet ) (W → en, mn, jet - jet ) • m and e p , E measurement; • leptonic decay to detect signal H(130Gev)ZZ*  4e → Higgs sector in the MSSM 5 bosons (h, A, H0, H±) A, H → tt h, H → bb , gg H → ZZ → 4l Supersymmetric particles: Unknown masses, decay chain to the LSP: Missing energy W e Z boson production excess. • General requirements: • Particle identification: e/g – jets – m – missing energy • Leptonic decays and high transverse momentum particles to detect signal above background • p , E measurement → Fabrizio Petrucci – Dottorando XV ciclo – Università Roma TRE 3

  4. ATLAS detector Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 4

  5. Air-core toroidal spectrometer • 3 measurement stations • Single point resolution • Detector segmentation (low occupancy & pattern recognition) • Low gas-gain (reduce ageing) 4) Must operate reliably for many years in an high rate and high background environment expecially in the forward regions. Muon Spectrometer • Requirements : • Good momentum resolution in the range 6GeV-1TeV 2) h coverage up to |h|~2.7 3) Trigger capability on single or double muons with programmable pt thresholds. Dedicated trigger chambers Solutions : Monitored Drift Tube (MDT) + Cathode Stip Chamber (CSC) : precision chambers Resistive Plate Chamber (RPC) + Thin Gap Chamber (TGC) : trigger chambers Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 5

  6. Tracking detectors Spectrometer superconducting coil calorimeter Solenoid superconducting coil RPC MDT Monitored Drift Tube (MDT) : Proportional drift tubes of 3cm diameter and of variable length (1.8-5.2 m). Assembled in 2 multilayers of 3 or 4 tubes. Internal laser alignement system. Single point resolution ~ 80 mm. Maximum drift time ~ 700 ns. Resistive Plate Chamber (RPC) : ionizanition chambers built with two resistive plates and read-out in both coordinates with cathodic strips. Space resolution ~ 1 cm. Time resolution ~ 2 ns. Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 6

  7. start stop MDT (Monitored Drift Tube) ~ 100 ep/cm produced Aluminium tube, diameter=3cm, thickness=400 mm tungsten wire, 50 mm t dc pressurized Ar·CO2 gas mixture electrons drift time Working conditions : Gas Mixture : Argon (93%, high primary ionization density) - CO2(7%) Pressure : 3 bar (High pressure reduces diffusion effects) Gas gain : 2*104 (HV=3080V) Discriminator threshold : 20 primary e (3mV/e → 60mV) Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 7

  8. MDT Chamber : test site Tubes are individually tested and assembled before arriving in Roma Tre. Cosmic-ray hodoscope in Roma TRE Chambers equipped with gas system, HV connection, read-out electronics and tested with cosmics before shipping to CERN. RPC planes BIL chamber: • 4 tubes per multilayer • 2*144 = 288 tubes per chamber (270 cm) • Total volume : • 2*275 l = 550 l Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 8

  9. before electronic optimization after electronic optimization Temperature (deg) Elapsed time (hour) Pressure drop = 2 mbar/day Pressure drop (mbar) Elapsed time (hour) MDT Chamber tests Chambers have to fulfil specific requirements concerning mechanical precision, gas tightness, electrical properties, noise level and uniformity of response. • Assembly and test sequence : • Gas distribution system • assembly and test • 2) Gas distribution mounted • on the chamber • 3) Test for gas tightness • 4) High Voltage distribution boards • 5) Test of the electrical properties (current drawn by the chamber) • 6) Read-out electronics • 7) Tube maps and noise level • 8) Cosmic data analysis • 9) Chamber response check Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 9

  10. 2001 H8 test beam set-up MDT Chamber :test beam Muon beam at the CERN SPS p = 10-180 GeV • Systems test and systems integration • Reduced multiple scattering • High events rate → large data sample in the same working conditions 2002 H8 test beam set-up Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 10

  11. 1) Tracking • 1) list of hit tubes in the event : tube identifiers (position) and drift time (tdc measurement). • 2) group aligned tubes in a multilayer to form a candidate track (only geometrical informations). • 3) drift time to drift distance using the proper r-t relation. • fit a line to the drift circles and eventually drop hits with an high contribution to the χ2. • track points definition and track parameters calculation. • Track can be extended to two multilayers 2) 3) track segment track point Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 11

  12. Residual’s mean value in the slice H8 2001 BIL chamber residuals(mm) Drift distance (mm) Drift circle Drift circle Reconstructed Track Reconstructed Track r-t relation correction residual residual time(ns) Drift Time (ns) Autocalibration : finding r-t relation • Iterative procedure. • Straight line computed fitting drift circles obtained with a seed r-t relation. • Residuals are computed. • The mean value of residual’s distribution is computed in different drift time slices. • It is used as the correction to the r-t relation. Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 12

  13. Effects due to variations of temperature, pressure and gas composition change the r-t relation. Different chamber can have different r-t relations. RM07 ml 12 RM07 ml 11 RM01 ml 12 RM01 ml 11 RM07 ml 12 RM07 ml 11 RM01 ml 12 RM01 ml 11 Time (ns) Systematic uncertainty in r-t relation are of the order of 10 μm Time (ns) 13

  14. Track fitted with n-1 points tube not included in the track s(r) residuals(mm) r(mm) Tube Resolution • Selection of “good” events (single track, 8 hits, good c2). • Residual for each tube and its extrapolation error • are computed with the track obtained with n-1 points. • Residual’s distribution width is given by: s(r)=  [Resolution(r)]2+ [<extrapolation error>(r)]2 Resolution(r) =  [s(r)]2 - [<extrapolation error>(r)]2 Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 14

  15. Run 2011 - QBIL = 6 Nominal conditions The resolution on different layers 4 layers average resolution resolution (mm) resolution (mm) Signed radius (mm) Signed radius (mm) Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 15

  16. Fast tracking in the spectrometer • A fast tracking procedure in the spectrometer is needed for calibration purpose and detector response monitoring. • Montecarlo simulation has been used: • - physic processes included: multiple scattering, energy loss, δ-ray production • - detailed geometry, material and magnetic field description • - tube response is simulated using realistic r-t relation, resolution and efficiency. • MDT measure only in the banding plane (R-φ plane): second coordinate from RPC hits to properly account for the magnetic field. • Track fit in each chamber: parameters of the segment, track points. • Comparison in both projections of segment parameters to form a track. • Fast tracking : assume circular trajectory • Look for the circle best fit to all track points. • Radius of curvature and error matrix computed • analitically. • Fast computation (150 μs). Outer station Middle station P(GeV)=0.3·B(Tesla)·Rcurv(m) Inner station Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 16

  17. From TDR. Full tracking used Large sector resolution (%) resolution (%) Small sector pgen (GeV) pgen (GeV) Fast Tracking performance Fabrizio Petrucci – Università Roma TRE e INFN 17

  18. Z→μμ • Z boson production and decay in muons is a clean and unambiguous signal. • Can be used for the calibration of the detector response and for luminosity measurement. • σ pp→Z · Bz→ ll = 1.8 nb • δ(σ pp→Z ) = 5% at the LHC energy • (αS, parton distribution functions, normalization of data sets) • Bz→ ll very well known Physics event Montecarlo generator and detector simulation ~0.1 events with both muons in the barrel muons in the barrel all muons Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 18

  19. Z→μμ reconstruction • Only muon spectrometer used • Muon pair invariant mass to select events Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 19

  20. Background Muon pairs with an invariant mass close to that of the Z boson. Main sources: heavy quarks semileptonic decays pp→qq+X→μμ+X (q=c,b,t) Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 20

  21. Z→μμ selection and luminosity measurement Range around the Z peak : ±10 GeV (±15 GeV) Selection efficiency : 84% (91%) → 156 pb (169 pb) Background contamination : 1.4 pb (2.2 pb) L=σ/N Luminosity can be measured using a process with a small theoretical error on the production cross section. δ(σ pp→Z ) = 5% To keep statistical uncertainty below theoretical uncertainty at least 103 Z needed σ pp→Z =160 pb → 103 Z = 6 pb-1 integrated luminosity → 20 minutes (3 h) of data taking at nominal (low) luminosity. Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 21

  22. Conclusions • MDT BIL chambers construction and test: • Setting up of the cosmic-ray hodoscope. • Definition of the procedures for chambers assembly and test. • The read-out software has been written and the prototype electronics has been • exploited. • 9 chambers produced and tested. • Chambers performance tested both at the test site and at the test-beam • showing the desired construction quality. • - Single point resolution: from 250 μm close to the wire down to 60 μm at the • maximum drift distance. • - Average single tube efficiency: >97 % over the full drift path. • - Autocalibration : r-t relation systematics lower than 10 μm. Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 22

  23. Conclusions (2) • Fast tracking and momentum measurement method in the barrel spectrometer: • Mean resolution varies from 3.5 % at 25 GeV to 10 % at 1 TeV. • No bias in the momentum measurement up to 200 GeV. • Processing time is less than 10 ms on a 600 MHz processor. • Reconstruction and selection of Z→μμ events: • About 10 % of pp → Z + X →μμ + X events with both muons in the barrel. • Resolution of 3 % in Z mass measurement. • Background due to heavy quarks semileptonic decay has been studied and • accounts for less than 2 % in Z counting. • A statistical uncertainty of 3% can be obtained in 20 min. (3 h) at nominal • (low) luminosity. Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 23

  24. Backup slides

  25. LHC: parametri e condizioni di misura stot(pp) = 70mb → 109 eventi/s (~25 eventi ogni incrocio dei fasci) sH ~ 10 pb → 10-1 eventi/s il fondo e’ 10 ordini di grandezza maggiore ↓ fondamentale la selezione (trigger) in impulso trasverso delle particelle Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 25

  26. Misura dell’impulso delle particelle cariche ed identificazione di vertici secondari • Capacita’ di tracciamento fino a |η|<2.5 • Risoluzione : ΔpT/pT <30% (50%) per |η|<2 • (2<|η|<2.5) • Efficienza : ε > 95% su tutto Ω per pT > 5 GeV ATLAS : il tracciatore interno MSGC (Micro Strip Gas Chamber) : camere a guadagno moderato con elettrodi di letturasegmentati a strisce σ~35 μm 6 punti di precisione + 36 negli straw tubes TRT (Transition Radiation Tracker) : straw tubes con σ~170 μm (identificazione degli elettroni tramite i γ generati) SCT (SemiConductor Tracker) : rivelatore al silicio (pixel + strisce); ulteriore strato vicino alvertice per la misura di vertici secondari.Risoluzione sul singolo punto σ~13 μm. Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 26

  27. ATLAS : il calorimetro Calorimetro elettromagnetico : geometria accordion, piombo e Argon liquido (2.5 mm, 4 mm) σE/E=10%/√(E(GeV))+1% Calorimetro adronico : a campionamento ferro e scintillatorenel barrel (TILE) σE/E=50%/√(E(GeV))+3% Identificare e misurare elettroni, fotoni, getti adronici e energia mancante (copertura fino a |η|=4.5, profondita’ 10λ) Calorimetri in avanti ad Argon liquido Calorimetro adronico : a campionamento rame e Argon liquido nelle zone in avanti σE/E=100%/√(E(GeV))+10% Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 27

  28. start stop MDT (Monitored Drift Tube) ~ 100 ep/cm produced Aluminium tube, diameter=3cm,thickness=400 mm thick tungsten wire, 50 mm t dc pressurized Ar·CO2 gas mixture electrons drift time Gas mixture : Argon (high primary ionization density) + CO2 High pressure (reduced diffusion effects) Good resolution on single point measurement Limits on gas gain Small signals to the read-out electronics Gas Mixture : Argon (93%) - CO2(7%) Pressure : 3 bar Gas gain : 2*104 (HV=3080V) Discriminator threshold : 20 primary e (3mV/e → 60mV) Working conditions : Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 28

  29. DAQ and read-out electronics Si utilizzano prototipi dell’elettronica finale per l’esperimento. Il software per il DAQ e’ stato sviluppato a Roma Tre. Chamber Service Module (CSM) : raccoglie dati da 18 mezzanini tramite un adattatore ed e’ letto da una CPU via un bus VME. Trigger esterno (ad esempio dal telescopio) Mezzanini : schede di front-end per la lettura di 6*4 tubi. Contengono un chip ASD (Amplificatore, Shaper, Discriminatore) e un TDC Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 29

  30. C S M 0 New hardware setup data link final mezzanine (AMT2) jtag in Adapter Final mezzanine + 10 K test site electronics. jtag out C P U VME One more “adapterino” is needed (noise source) Fabrizio Petrucci – Università Roma TRE e INFN 30

  31. Tdrift (TDC counts) Tdrift = tMax - t0 Drift time distribution Two effects take place when temperature increases at constant pressure and interplay: • Gas is less dense  less charge per unit path AND Chamber GAIN modifications • Drift velocity is larger 31

  32. Track fitted with n-1 points tube not included in the track Residuals (mm) Total missing hits ~ 0.1% “Good” hits (~efficient hits) Radius (mm) 1) Tracks that cross the tube under analysis are fitted excluding that tube. 2) Check the hit in the tube : - Hit not present - High contribution to the c2 Efficiency tube not efficient Hits due to d rays can “hide” track hits. Effect grows with radius. Residuals (mm) ~high C2 hits Radius (mm) Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 32

  33. Radius of curvature We look for the circle which better fits all the track points. χ2 minimization with respect to R2 instead of R. χ2 = Σ( f(xc,yc) - Ri2 ) 2 / σ2R f(xc,yc) = (x-xc)2+(y-yc)2 Impose that the first track point (x1,y1) belongs to the track: (x1-xc)2+(y1-yc)2-Rc2 = 0 (*) Use (x1,y1) as origin for other points: Xi = xi - x1 ; Yi = yi - y1 f(xc,yc) - Ri2 = Xi2 + Yi2 +2Xi (x1-xc) + 2Yi (y1-yc) (Ri2 ~Rc2) It’s possible to find the point (xc,yc) which minimize the χ2 analitically. Also the error matrix is computable exactely. The curvature radius is the obtained from (*) The computation is fast (150 μs). 33

  34. Fast tracking • G4 spectrometer simulation • Track segments in the single chambers. • Second coordinate from RPC hits with a proper smearing (digitization not ready) • Comparison of fitted tracks parameters to match tracks. • Fast tracking : circular trajectories (radius of curvature computation →) 2 track segments 3 track segments 34

  35. Radius (m) prec (GeV) φ Momentum measurement P(GeV)=0.3·Bl(Tesla)·Rcurv(m) Large sector Small sector 25 GeV muons Approximations not accurate expecially in small sectors corrections needed 4+1parameters needed (no η and no momentum dependence) φ Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 35

  36. Large sector Small sector (pgen-prec)/pgen (pgen-prec)/pgen pgen (GeV) pgen (GeV) Performance (II) Fabrizio Petrucci – Università Roma TRE e INFN 36

  37. Large sector Small sector resolution (%) resolution (%) pgen (GeV) pgen (GeV) Resolution effects Fabrizio Petrucci – Università Roma TRE e INFN 37

  38. Small sector Large sector resolution (%) resolution (%) pgen (GeV) pgen (GeV) R-t relation effect (I) Tubes with different r-t relation. Example from H8 test beam analysis : triplet of tubes in the same multilayer with different max drift time. Effect simulated in digitization. Events reconstructed using a mean r-t relation (the same for all tubes). Fabrizio Petrucci – Università Roma TRE e INFN 38

  39. Large sector Small sector (pgen-prec)/pgen (pgen-prec)/pgen pgen (GeV) pgen (GeV) R-t relation effect (II) Fabrizio Petrucci – Università Roma TRE e INFN 39

  40. requisiti di trigger selezione degli eventi Sezione d’urto differenziale di produzione di m Trigger 3 livelli di trigger in cascata, riduzione della rate del fondo ed elevata efficienza per eventi di segnale. Criteri utilizzati: Tagli in impulso trasverso, richiesta di isolamento Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 40

  41. Trigger μ Schema del 1o lvl di trigger m Calcolo dell’impulso al 2o lvl di trigger Fabrizio Petrucci – Dipartimento di Fisica “E.Amaldi” - Università Roma TRE 41

More Related