- 112 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about 'Explain why ABC is isosceles.' - octavious

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

ABC and XAB are alternate interior angles formed by XA, BC, and the transversal AB. Because XA || BC, ABCXAB.

The diagram shows that XABACB. By the Transitive Property of Congruence, ABCACB.

You can use the Converse of the Isosceles Triangle Theorem to conclude that ABAC.

By the definition of an isosceles triangle, ABC is isosceles.

Isosceles and Equilateral Triangles

LESSON 4-5

Additional Examples

Explain why ABC is isosceles.

Quick Check

MOLNThe bisector of the vertex angle of an isosceles triangle is the perpendicular bisector of the base.

x = 90 Definition of perpendicular

Isosceles and Equilateral Triangles

LESSON 4-5

Additional Examples

Suppose that mL = y. Find the values of x and y.

mN = mLIsosceles Triangle Theorem

mL = y Given

mN = yTransitive Property of Equality

mN + mNMO + mMON = 180 Triangle Angle-Sum Theorem

y + y + 90 = 180 Substitute.

2y + 90 = 180 Simplify.

2y = 90 Subtract 90 from each side.

y = 45 Divide each side by 2.

Quick Check

Therefore, x = 90 and y = 45.

Isosceles and Equilateral Triangles

LESSON 4-5

Additional Examples

Suppose the raised garden bed is a regular hexagon. Suppose that a segment is drawn between the endpoints of the angle marked x. Find the angle measures of the triangle that is formed.

Because the garden is a regular hexagon, the sides have equal length, so the triangle is isosceles.

By the Isosceles Triangle Theorem, the unknown angles are congruent.

Example 4 found that the measure of the angle marked x is 120°. The sum of the angle measures of a triangle is 180°.

If you label each unknown angle y, 120 + y + y = 180.

120 + 2y = 180

2y = 60

y = 30

Quick Check

So the angle measures in the triangle are 120°, 30° and 30°.

Download Presentation

Connecting to Server..