Pre presentation
This presentation is the property of its rightful owner.
Sponsored Links
1 / 11

Pre - presentation PowerPoint PPT Presentation


  • 101 Views
  • Uploaded on
  • Presentation posted in: General

Pre - presentation. Group 2: Job Hartjes , Maurice Hermans, Jeroen Leus , Marc Romeijn & Esther Verhoef. Line-out. Problem definition Our approach Program demonstration Setup experiments Questions. Our approach. Assumptions No pedestrians No accidents No priority vehicles.

Download Presentation

Pre - presentation

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Pre presentation

Pre- presentation

Group 2: Job Hartjes, Maurice Hermans, Jeroen Leus, Marc Romeijn & Esther Verhoef.

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Line out

Line-out

  • Problemdefinition

  • Our approach

  • Program demonstration

  • Setup experiments

  • Questions

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Our approach

Our approach

Assumptions

  • No pedestrians

  • No accidents

  • No priorityvehicles

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Our approach1

Our approach

Intelligent Driver Model

  • Car following model

  • Uses intuitive parameters

  • Addedadditionalparameters for model

http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html

http://en.wikipedia.org/wiki/Intelligent_driver_model


Lane changing

LaneChanging

  • Faster cars overtakeslower cars

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Path finding

Pathfinding

Dijkstra:

  • graph searchalgortihm

  • Especially for routingalgorithms

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Xml reader

XML-reader

  • Takes information from open streetmaps

  • Specifyx,ystart and x,y end

  • Transforms data intoreadablematlab network

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Pre presentation

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Experimental setup

Experimental setup

  • Lanechanging:

    • How actuallytested to improvegeneral flow?

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Experimental setup1

Experimental setup

  • Traffic lights:

    5 strategies:

    • Time based

      • Light green for 50 timesteps

    • Event-based

      • green for busiest road

      • Green for busiest road but otherroadswill have green as well

      • ?

      • Put roads adjacent to busiest intersection green

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


Questions

Questions

http://en.wikipedia.org/wiki/Intelligent_driver_model, http://www.vwi.tu-dresden.de/~treiber/MicroApplet/IDM.html


  • Login