1 / 24

Reversible data hiding for high quality images using modification of prediction errors

Reversible data hiding for high quality images using modification of prediction errors. Source : The Journal of Systems and Software, In Press, Corrected Proof, Available online 3 June 2009 Authors : Wien Hong, Tung-Shou Chen, and Chih-Wei Shiu Presenter : Chia-Chun Wu

nuri
Download Presentation

Reversible data hiding for high quality images using modification of prediction errors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reversible data hiding for high quality images using modification of prediction errors Source: The Journal of Systems and Software, In Press, Corrected Proof, Available online 3 June 2009 Authors: Wien Hong, Tung-Shou Chen, and Chih-Wei Shiu Presenter: Chia-Chun Wu Date: September 4, 2009

  2. OUTLINE • INTRODUCTION • RELATED WORKS • PROPOSED SCHEME • EXPERIMENTAL RESULTS • CONCLUSIONS

  3. 要解決的問題 • 此篇論文主要是利用相鄰像素值非常相近的特性,以周圍相鄰的像素值來對要進行隱藏的像素值先進行預測的動作,並計算預測值跟實際值的差值,接著結合Ni等人提出來的直方圖無失真資料隱藏的方法,藉由調整預測誤差值來達到達到高容量、低失真的無失真資料隱藏的目的。

  4. INTRODUCTION (1/3) Reversible data hiding(Lossless Data Hiding) Cover Image Lossless Embedding Stego-image Secret Data Modification of Prediction Errors (MPE) Lossless Cover Image Lossless Exaction Stego-image Secret Data

  5. INTRODUCTION (2/3) • Reversible data hiding (Lossless Data Hiding) • Application: • medical images, military photos, law enforcement • Challenges: • Capacity • Quality

  6. INTRODUCTION (3/3) • Reversible data hiding schemes: • Difference expansion • Reversible data embedding using a difference expansion, Jun Tian, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 890 – 896, Aug. 2003 • Reversible watermark using the difference expansion of a generalized integer transform, Alattar, A.M. IEEE Transactions on Image Processing, vol. 13, no. 8, pp. 1147 - 1156, Aug. 2004 • Adaptive lossless steganographic scheme with centralized difference expansion, C.C. Lee, H.C. Wu, C.S. Tsai, and Y.P. Chu, Pattern Recognition, vol. 41, no. 6, pp. 2097-2106, 2008 • Histogram modification • Reversible data hiding, Z. Ni, Y.Q. Shi, N. Ansari, and W. Su, IEEE Transactions on Circuits and Systems for Video Technology, vol.16, no.3, pp. 354 – 362, March 2006 • Hiding Data Reversibly in an Image via Increasing Differences between Two Neighboring Pixels, C.C. Lin and N.L. Hsueh, IEICE Transactions on Information and Systems, vol. E90–D, no.12, Dec. 2007 • A lossless data hiding scheme based on three-pixel block differences, C.C. Lin and N.L. Hsueh, Pattern Recognition vol. 41, no. 4, pp. 1415 – 1425, April 2008

  7. RELATED WORKS (1/3) Ni et al.’s method Original image Histogram ofpixel values Peak point Secret data embedding Zero point 101100 unchanged Extracting Stego image 101100

  8. RELATED WORKS (2/3) Thodi and Rodriguez’s method pi = 204 a = 203, b = 205, c = 204, xi = 202 Predicted value xi’ = 2 × pi / 2 xi’ = 2 × 204 / 2 = 204 Prediction error ei between xi and xi’ ei = xi – xi’ ei = xi – xi’= -2 Expanded prediction error Ei = 2 × ei + sj If secret bit sj= 1, Ei = 2 × ei + sj= -3 Stego-pixel yi = xi’ + Ei. ( or yi = xi + ei + sj) yi = 204 + (-3) =201 Embedding phase

  9. RELATED WORKS (3/3) Thodi and Rodriguez’s method pi’ = 204 a = 203, b = 205, c = 204, yi = 201 Secret bit sj= LSB(yi), Predicted value yi’ = 2 × pi’ / 2 sj= LSB(yi) = LSB(201) = 1 Expanded prediction error Ei = yi – yi’ yi’ = 2 × 204 / 2 = 204 Ei = 201 – 204 = -3 Prediction error ei = Ei / 2 ei = -3/ 2 = -2 xi = yi’ + ei(or xi = yi – ei – sj). xi = 204 + (-2) = 202 Extracting phase

  10. PROPOSE SCHEME (1/6) More suitable Histograms of prediction errors and histogram of pixels in the spatial domain for images Lena and Baboon.

  11. PROPOSE SCHEME (2/6) Prediction error ei = xi – pi. Embedding phase

  12. PROPOSE SCHEME (3/6) Secret = 1012 154 156 153 156 157 149 148 157 154 158 157 157 158 157 155 Stego image I’ Original image I p2 = 154 c≤ min (a, b) → p1 = 156 e2 = x2 – p2 = -4 : non-embeddable e2 = e2 – 1 = -5 e1 = x1 – p1 = 0 : embeddable e = e + 1 = 1 stopping location L p5 = 150 e5 = x5 – p5 = 7, all secret bits are embedded, set L=(2,2)

  13. PROPOSE SCHEME (4/6) Prediction error ei = xi – pi. Extracting phase

  14. PROPOSE SCHEME (5/6) 153 156 153 153 154 156 156 154 157 149 150 148 Stego image I’ Original image I c≤ min (a, b) → p1’ = 156 p2’ = 154 e1 = x1’ – p1’ = 1: secret bit = 1 e = e - 1 = 0 e2 = x2’ – p2’ = -5: no secret bit e = e + 1 = -4 p3’ = 149 e3 = x3’ – p3’ = -1: secret bit = 0

  15. PROPOSE SCHEME (6/6) 157 156 154 157 149 150 148 154 158 157 157 157 158 157 155 Stego image I’ Original image I p5’ = 150 c≤ min (a, b) → p4’ = 157 e1 = x1’ – p5’ = 7 L =(2,2): all embedded message has been extracted e1 = x1’ – p4’ = 1: secret bit = 1 e = e - 1 = 0

  16. EXPERIMENTAL RESULTS (1/6) Experimental results of some commonly used images

  17. EXPERIMENTAL RESULTS (2/6) Comparison of PSNR with same embedding capacity

  18. EXPERIMENTAL RESULTS (3/6) Experimental results for 23 natural photographic test images sized 768 × 512 (payload is measured in bits).

  19. EXPERIMENTAL RESULTS (4/6) Experimental results for test images

  20. EXPERIMENTAL RESULTS (5/6) Capacity versus distortion performance of various methods for test images

  21. EXPERIMENTAL RESULTS (6/6) Capacity versus distortion performance of various methods for test images

  22. CONCLUSIONS • The embedding capacity of proposed scheme is much higher than that of Ni et al.’s method. • The visual quality of the proposed method is better than that of Thodi’s method.

  23. 此篇論文之優缺點 • 優點: • 因為一般影像而言,統計完預測誤值的結果後,Peak bin的index都是0,因此,跟Ni.等人的方法比起來,此方法不需額外記錄Zero bin及Peak bin的資訊。 • Ni.等人的方法的方法,不論要藏入的資料量多大,整張影像中每個像素值都會被修改變動到,此方法利用Stopping Location L來記錄Secret Data最後藏完時的座標位址,在這座標之後的像素值就完全不做任何修改或變動,來降低影像失真的程度。 • 缺點: • 跟Ni.等人的方法比起來,此方法要額外記錄及傳送Stopping Location L的資訊給接收端。

  24. 研究方向 • 本方法是藉由相鄰的3個像素值來進行預測的動作,若額外多考慮相鄰1個像素值的情況下或是利用其它預測的方法,也許可以提高預測的準確度,當預測的準確度愈高的情況下,Peak bin就愈集中在0的地方,相對的最大可以隱藏的資料量就會提高 (Peak bin的數量決定隱藏量的大小)。

More Related