1 / 44

Double Beta Decay Experiments

Jeanne Wilson University of Sussex 29/06/05, RAL. Double Beta Decay Experiments. Contents. What is double beta decay and what can it tell us? Experimental requirements Experimental status A closer look at a selection of experiments. e -. n. p.  e.  e. n. p. e -. 1 +. (A,Z+1).

nraymond
Download Presentation

Double Beta Decay Experiments

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Jeanne Wilson University of Sussex 29/06/05, RAL Double Beta Decay Experiments

  2. Contents • What is double beta decay and what can it tell us? • Experimental requirements • Experimental status • A closer look at a selection of experiments

  3. e- n p e e n p e- 1+ (A,Z+1) 0+ (A,Z) 0+ (A,Z+2) Double Beta Decay (2) (A,Z)  (A,Z+2) + 2 e- + 2e Only 35 isotopesknown in nature

  4. Neutrinoless mode (0) e- n p L = 2 (A,Z)  (A,Z+2) + 2 e- e X e n p e-

  5. What Can We Learn? • Dirac or Majorana? • Absolute Mass Scale • Mass Hierarchy? 0=(T1/2)-1=G0|M0|2m2 Phase space factor Nuclear Matrix element

  6. Normal Inverted Degenerate m3 m2 m1 m2 m1 m3 0 Mass Hierarchy

  7. What Can We Learn? • Dirac or Majorana? • Absolute Mass Scale • Mass hierarchy? • CP violation? • Matter-Antimatter Asymmetry

  8. CP Violation? Atmospheric Solar If sin 13 0  CP-violation Majorana : U= UPMNS diag(1,e i1 ,e i2 )

  9. mee = Ue12m1 Ue22m2 Ue32m3 The Neutrino Mass relative CP phases = 1 me =  |Uek|2 mk

  10. Experimental Requirements

  11.  Decay Endpoint Energy

  12. Requirements for 0 Searches • High Q value • High Isotopic Abundance • Background Rejection • Ideally no background in signal region OR • Clear identification of decay

  13. 2 Decays • The ultimate, irreducible background 76Ge (Diode) 0.2% 130Te (Bolometer) 0.4% 136Xe (TPC) 3.3% CdZnTe (Semiconductor) 3-4% 100Mo, 82Se (Plastic scintillator) ~14% S. Elliott, P. Vogel, Ann. Rev. Nucl. Part. Sci. 2002

  14. Requirements for 0 Searches • High Q value • High Isotopic Abundance • Background Rejection • Good Energy Resolution • Theory 0=(T1/2)-1=G0|M0|2m2

  15. Nuclear Matrix Elements P. Vogel, PDG 02 A factor 3 uncertainty in the NME means a factor of ~10 in half-life.

  16. Requirements for 0 Searches • High Q value • High Isotopic Abundance • Background Rejection • Good Energy Resolution • Theory • possibility to measure 2 modes too • Large Isotope Sample

  17. 76Ge We Are Here Next Generation Our Dreams How Much Mass? ~ 1025 yrs ~ 1026 yrs ~ 1027 yrs ~ 1028 yrs ~ 1029 yrs

  18. How Much Mass? T1/2 = ln2 • a•NA• M • t / N (t<<T) ( Background free) 50 meV half-life measurements of 1026-27y 1 event/y you need 1026-27 source atoms ~ 1000 moles of isotope  ~100 kg

  19. Experiments

  20. HM Cuoricino NEMO3 Half Life (years) CdWO4 CaF2 Experimental Status Disclaimer : This is not a complete list of experiments!!! 90% C.L.

  21. Heidelberg-Moscow • 11kg 76Ge (86-88% enrichment) • 5 crystals • Aug 1990 – May 2003 (71.7 kgy) • 0.2% or better energy resolution 2001 – Evidence for 0 peak at 2039keV

  22. References Evidence H.V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 16,2409 (2001) Critical comments F. Feruglio et al., hep-ph/0201291 C.A. Aalseth et al., hep-ex/0202018 Reply H.V. Klapdor-Kleingrothaus, hep-ph/0205228 H.L. Harney, hep-ph/0205293 Latest Heidelberg-Moscow results H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B586 (2004) 198-212

  23. Evidence? • Weak 214Bi lines 2010.7, 2016.7, 2021.8, 2052.9keV • 0 peak • ? Electron conversion of 2118keV  line2030keV • 2039keV peak has 4.2 significance <m> = 0.2-0.6 eV

  24. Improvements • More statistics – data taking till May 2003 • Stricter acceptance conditions 54.98 kgy  50.57 kgy • Refined summing procedure • Better E calibration of individual runs • Various fit methods • Simultaneous fit 2000-2060keV • Time structure of events – pulse shape for single site events

  25. New Germanium Experiments

  26. GERDA • GERmanium Detector Array • At LNGS, (Italy, Russia, Germany, Poland) • Germanium Diodes • Inherited from HM, IGEX • Cu cryostat filled with liquid N • 3m thick Čerenkov H2O shield

  27. GERDA Phase I • Nearly 20kg Ge (86% enrichment) • Crystal characterisation • Install in cryostat, summer 2006 • T1/2>1.2 1025 sensitivity in 1 year Phase II • New crystal material – working on purity and efficiency of crystal growing • Crystal segmentation • LAr in cryostat for background suppression • 100kg years  T1/2>2 1026 sensitivity

  28. Majorana • 500kg enriched Ge Segmented detectors • Based on IGEX technology • background reduced by >50 • cosmogenic n spallation • 10 years  T1/2>4 1027 years <m> ~ 0.03-0.04 eV

  29. Majorana • Design optimisation underway • DoE review process in progress • Start with 180kg experiment • Easily extendable to 500kg or 1 ton. • Collaboration with GERDA experiment for simulations. • Possibly combine for ton scale experiment

  30. Tellurium Experiments

  31. Tellurium Experiments MiBETA 6.8kg TeO2 Cuoricino 40.7 kg TeO2 CUORE ~ 750 kg TeO2 • Bolometers – E release in crystals gives measurable T increase at ~10mK (~1MeV/0.1mK) • Detector anticoincidence for bkg suppression

  32. Cuoricino and CUORE Cuoricino • 0.18 ± 0.01 bkg events/keV/kg/y • Resolution ~7.5 ±2.9 keV at 2615 keV • T1/2 > 1.8 .1024 years (10.85 kgy of data) • 5 years  9 .1024 years (<m> 0.1-0.7eV) CUORE • 19 Cuorocino-like towers • Goal 0.001-0.01 bkg events/keV/kg/y • Sensitivity <m> ~ 0.02-0.13eV

  33. NEMO

  34. NEMOIII • Running in Frejus UG lab since Feb 2003 • 10kg 0 isotopes in 20m2 cylinder • Passive sources • Event identification: • Drift wire tracking chamber • Plastic scintillator calorimeter • 25Gaus field

  35. NEMOIII First Results • 82Se (Q=2995keV) T1/2 > 1.5 1023 years <m> = 1.3-3.0 eV • 100Mo (Q=3034keV) T1/2 > 3.5 1023 years <m> = 0.65-1.0 eV (V-A), 90%CL • T1/2 (2) for 116Cd, 150Nd, 96Zr and 48Ca

  36. SuperNEMO • NEMOIII with 5 years Radon-free data: 6914 g of 100Mo T1/2> 4 .1024 y <m> < 0.2 – 0.35 eV 932 g of 82Se T1/2> 8 .1023 y <m> < 0.65 – 1.8 eV • SuperNEMO = NEMOIII*10 + better E/E • Sensitivity ~0.03 – 0.06 eV in 5 yr • Only background from 2 tail • Improve E/E from (14%-16%)/E to (7%-9%)/E • 100Mo, 82Se116Cd and 130Te

  37. EXO

  38. EXO • > 1 ton Liquid Xe TPC (90% enriched 136Xe) • Ionisation + Scintillation signals  Good energy resolution • Identification of 136Badaughter  Clear signal • Electrostatic probe • Laser fluorescence • Prototype late 2005 • 200kg at WIPP • No Ba identification

  39. COBRA

  40. COBRA • Large array of 1cm3 CdZnTe semiconductor crystals • Coincidences, pixellisation and pulse shape analysis • Good E resolution (~4%) • Room temperature • Multiple isotopes, 116Cd, 130Te, 106Cd

  41. ++ Modes p n e+ e+ n p Q-4mec2 • (A,Z)  (A,Z-2) + 2 e+ (+2e)++ Q-2mec2 • e- + (A,Z)  (A,Z-2) + e+ (+2e )+/EC Q • 2 e- + (A,Z)  (A,Z-2) (+2e)EC/EC Enhanced sensitivity to right handed weak currents (V+A) M. Hirsch et al., Z. Phys. A 347,151 (1994)

  42. COBRA • 0.4kg prototype (64 crystals) – Autumn 2005 • Prove background reduction and rejection • Fully funded (UK) • Physics: Access to 22EC 113Cd 2 T1/2 D.Dobbos

  43. Multipurpose Experiments • XMass : liquid 136Xe detector • Solar neutrinos and Dark matter • MOON : 100Mo scintillator detector • Real time studies of low E solar neutrinos • GENIUS : 76Ge in LN • Dark matter • + others

  44. Summary and Outlook • 0 is a gold plated channel to probethe fundamental character of neutrinos • Large mass >100kg - ton required for 0 discovery • A number of different approaches on the market

More Related