Extracting monomers
Sponsored Links
This presentation is the property of its rightful owner.
1 / 32

Extracting Monomers PowerPoint PPT Presentation

  • Uploaded on
  • Presentation posted in: General

Extracting Monomers. Crude oil extracted from the ground is complex and full of a variety of hydrocarbon structure. Crude oil refineries sort the different hydrocarbons by size, structure, and weight. Large hydrocarbons can be broken down into more useful “pieces.”.

Download Presentation

Extracting Monomers

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

Extracting Monomers

Crude oil extracted from the ground is complex and full of a variety of hydrocarbon structure.

Crude oil refineries sort the different hydrocarbons by size, structure, and weight.

Large hydrocarbons can be broken down into more useful “pieces.”

Examples of HCs in Crude Oil

All of these are hydrocarbons, bonded together in various structures.

Which of these can you name?

How important is oil to our economy?

Top 10 Companies worldwide:

Exxon MobilWal-Mart StoresRoyal Dutch ShellBPGeneral MotorsChevronDaimlerChryslerToyota MotorFord MotorConocoPhillips

How many are oil companies? What do the others sell?

What’s in our gas prices?

What are “polymers”?

A polymer is a large molecule that is created when monomers are joined together. A monomer is a single unit that is used to build a polymer. Polymers may be naturally occurring or man-made (synthetic).


Straight Chained Polymer

(made up of one type of monomer)

Spaghetti-like structure of straight chain polymers. Coils lead to entanglement (stiffness).

Branched Chain Polymer

Branching reduces the density and increases the flexibility of a polymer.

Branching creates more flexibility; less rigid plastic

Low density polyethylene has more branches, so it cannot be packed as closely as in linear, high density polyethylene.

Cross Linked Polymers

Cross-linking increases stiffness and strength of a polymer.

Vulcanizing Rubber to make it more flexible, tougher and temperature resistant and involves adding Sulfur atoms to create cross-links.

Properties of Polymers

  • Properties are determined by the structure of the molecules and depend on:

    -type of monomers used

    -chain length


    -degree of cross-linking

Branching and Cross-links affect strength


Polymer Structure

Branched, Cross-linked or Linear?

CAPT LAB: Synthetic Polymers

Polymers are large molecules consisting of

chains of small molecules called monomers

joined together in a repeating pattern. In the

early 1900s, scientists began to understand

the makeup of natural polymers and how to make synthetic polymers with properties that complement, or improve on, those of natural materials. One simple synthetic polymer chemists developed is polyethylene. They developed it by repeating units of the monomer ethylene (H2C=CH2). Polyethylene is a very large, zigzag-shaped molecule. One small part of a polyethylene chain is shown below.

CAPT LAB: Synthetic Polymers

Chemists and engineers have learned to

process and modify molecules of polyethylene

in different ways to manufacture common

household products with a variety of

characteristics. Polyethylene is used to make plastic trash bags, dry cleaning bags, milk jugs and soda bottles. In industry, materials made from polyethylene are tested for what are called “stress-strain behaviors.” stress-strain behaviors include:

Tensile strength - the amount of pulling force placed on a material

before it breaks

Abrasion resistance - toughness of a material against scraping,

scuffing or scarring

Puncture resistance –ability of a material to keep moving objects from

perforating the surface.

CAPT LAB: Synthetic Polymers

Your task

You and your lab partners will design an experiment that investigates one stress-strain behaviors of various plastic products made of the synthetic polymer polyethylene.

You have been provided with an assortment of plastic products to test. The stress-strain behaviors you will investigate are tensile strength or puncture resistance. Remember the importance of only testing ONE variable at a time, keeping all others constant as much as possible.

CAPT LAB: Synthetic Polymers

Tensile strength

The tensile strength of a material measures how much pulling stress the material will endure

before failing. This is very important in applications that depend on a polymer's physical strength or durability. For example, a rubber band with a higher tensile strength will hold a greater weight before snapping. In general, tensile strength increases with polymer chain length.

Puncture resistance

The puncture resistance of a material measures how much force is required for a moving object to break through a material. This is also very important for certain applications such as trash bags –a greater puncture resistance will result in less trash poking through and spilling out on the ground! Puncture resistance also generally increases with greater chain length.

CAPT LAB: Synthetic Polymers

Designing Your Experiment

In your own words, state the problem you are going to investigate. Write a hypothesis using an “If… then… because..” statement that describes what you expect to find and why. Include a clear identification of the independent and dependent variables that will be studied.

Your experimental design should match the statement of the problem and should be clearly described so someone else could replicate the experiment. Use a diagram if necessary to help explain your design.

CAPT LAB: Synthetic Polymers

Things to consider in your design:

1. How will you measure the amount of stretching the plastic can endure? What will you consider the starting point? What will be the ending point?

2. How can you keep the force of a moving object constant? Is there a natural force you can use that is ALWAYS the same?

Remember the importance of only testing ONE variable at a time, keeping all others constant as much as possible. Also remember the importance of making valid conclusions from your data… how many trials will you do?

Some examples of synthetic polymer structures:

Polyethylene (PE)

used for: flexible bottles, ice trays, plastic bags

Polyvinyl Chloride (PVC)

used for: pipes, bottles, CD’s, computer housings

Polypropylene (PP)

used for: rope, luggage, carpet, film, polar fleece


Polystyrene (PS)

used for: toys, packaging, egg cartons, flotation devices, hot cups

Natural and Synthetic Polymers

Some Natural Polymers in Food…

natural polymers

Gelatin in gummi worms and gummi bears are made from natural polymers!

Bubble gum contains styrene butadiene rubber!

Carbohydrates (starches) and proteins are examples of natural polymers!

Polymers are everywhere!!!

Polymers at the movies…. Nylon carpet, polyester and acrylic seats, polyester curtains, nylon screen, polyester film strip, waxy polyethylene popcorn tub, starch in popcorn, polystyrene cups, plastic M&M bag, protein in hotdogs, gelatin in gummy bears, paraffin in Junior Mints, sticky stuff on the floor made of soda, butter, Skittles, Milk Duds and more…

  • Login