Loading in 5 sec....

Materials undergoing stress/strain which obey Hooke’s Law PowerPoint Presentation

Materials undergoing stress/strain which obey Hooke’s Law

- 81 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about ' Materials undergoing stress/strain which obey Hooke’s Law ' - noelani-shelton

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

Materials undergoing stress/strain which obey Hooke’s Law

- are experiencing elastic deformation
- are experiencing plastic deformation.
- Are experiencing elastic deformation only up to a certain stress/strain.
- are experiencing plastic deformation only up to a certain stress/strain.
- possibly C or D.

A block of mass m = 1.3 kg is vibrating on a spring with a force constant of k = 194 N/m. When the instantaneous speed of the block is v = 0.55 m/s, the block is 0.30 m away from equilibrium. Find the maximum speed of the block during the vibrations.

A block of mass m = 1.3 kg is vibrating on a spring with a force constant of k = 194 N/m. When the instantaneous speed of the block is v = 0.55 m/s, the block is 0.30 m away from equilibrium. Find the amplitude of vibrations.

A block of mass m = 0.75 kg is connected to a spring. The block is in simple harmonic motion during which its maximum velocity is vmax = 1.2 m/s and its maximum acceleration is amax = 0.36 m/s2. Find the total energy of the system.

A block of mass m = 0.75 kg is connected to a spring. The block is in simple harmonic motion during which its maximum velocity is vmax = 1.2 m/s and its maximum acceleration is amax = 0.36 m/s2. Find the amplitude of the oscillations.

A block of mass m = 0.75 kg is connected to a spring. The block is in simple harmonic motion during which its maximum velocity is vmax = 1.2 m/s and its maximum acceleration is amax = 0.36 m/s2. Find the period of oscillations.

A block of mass m = 0.75 kg is connected to a spring. The block is in simple harmonic motion during which its maximum velocity is vmax = 1.2 m/s and its maximum acceleration is amax = 0.36 m/s2. How far is the block from equilibrium at the moment when its kinetic energy is equal to its potential energy? Assume that potential energy is zero at equilibrium.

Download Presentation

Connecting to Server..