Introduction
This presentation is the property of its rightful owner.
Sponsored Links
1 / 30

Introduction PowerPoint PPT Presentation


  • 38 Views
  • Uploaded on
  • Presentation posted in: General

Introduction. http://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-vid-filtering-0710-v04.pdf describes in pages 19 and 20 the “ Optimal distribution of data: Non-802.1aq ” and “ Using VIDs for manually configured optimum data distribution ”

Download Presentation

Introduction

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Introduction

Introduction

  • http://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-vid-filtering-0710-v04.pdf describes in pages 19 and 20 the “Optimal distribution of data: Non-802.1aq” and “Using VIDs for manually configured optimum data distribution”

  • The following slides expand the description in those two pages with

    • Multi (e.g. 2) domain E-LAN example

    • 1 root and 2 roots E-Tree examples

    • Internal node configuration details for E-LAN and E-Tree cases, including

      • Relay VIDs and switch configurations

      • Egress filtering

      • Egress and ingress VID translation,

      • Per domain local VID values

      • Per link local VID values (used in transport networks)

      • Primary VID values in MEPs and MIPs

  • v02 adds some E-Tree cases, corrections of some mistakes in v01, an evaluation of UP and Down MEP/MIP primary VID values and support of those multi-VID models in G.8021

  • v03 includes some corrections in the B1 and B2 node expansion figures on slides 5,17,20,26.


E lan 1 domain

Configuration of ‘I’ and ‘V’ relay-VIDs, local VIDs, egress filtering and VID translation

Internal configuration of node B1 with the E-LAN FID including the ‘I’ and ‘V’ relay-VID learning and forwarding processes and VID translation at the egress ports

V

I

V

V

I

I

E-LAN (1 domain)

C11

V

P11

B1

C12

I

V

P10

P13

P12

B3

P31

P30

V

I

C3

P32

P21

P23

B2

V

P20

I

C2

B1

V

VLAN has common local VID value ‘I’ on the inner links B1-B2, B2-B3 and B3-B1

C11

P11

VID Translation at egress port

V

IV

V,I

P10

B1

VI

C12

VI

V

V

SVL

V

V,I

V

V

IV

I

V

I

I

IV

B3

V

V,I

V

I

C3

IV

V

I

VI

I

V

IV

V

B2

V

V,I

P13

C2

VI

VI

VLAN has 2 relay-VID values ‘I’ and ‘V’ which operate in SVL mode

P12

I

X: Local VID

XY, YX: relay-VID X to local-VID Y Translation at egress port

X: Relay-VID

SVL: Shared VLAN Learning


E lan 2 domains

Extension of previous example with a 2nd domain with edge nodes B2-B4-B5

VLAN with two domains interconnected by node B2

Next slide illustrates

Need for two inner domain VIDs (Ia, Ib) in this case

Relay-VIDs registered at each output port

VID translation at egress ports

VID values used on the links between the nodes

Detailed architecture in node B2 (FID with 3 relay-VIDs, SVL, VID Translation)

E-LAN (2 domains)

C11

P11

B1

C12

P10

P13

P12

B3

P31

P30

C3

P32

P21

P23

B2

P20

C2

VLAN has two domains with a full mesh of links

P24

P25

P42

P52

P55

P40

B4

P45

P54

B5

C4

C52

P50

C51


E lan 2 domains1

Ia

Ia

V

Ib

V

Ia

Ib

Ia

V

Ia

V

Ib

V

V

Ib

Ib

Ia

Ia

Ib

Ib

E-LAN (2 domains)

C11

VLAN has common local VID value ‘Ia’ on the inner links B1-B2, B2-B3 and B3-B1

V

IV

V,I

VLAN in Node B2 has 3 relay-VID values ‘Ia’, ‘Ib’ and ‘V’ which operate in SVL mode

B1

VIa

C12

VIa

V

V,Ia

V

Ia

IaV

V

IaV

B3

V

V,Ia

V

C3

Ia

IaV

V

V,IbIa

V,Ib

Ia

IaV

Ia

V,Ib

B2

B2

V

V,Ia,Ib

P21

C2

V,IbIa

VIa,Ib

V,Ia

V,Ia

IbV,Ia

V,IaIb

VLAN has common local VID value ‘Ib’ on the inner links B2-B4, B4-B5 and B5-B2

SVL

Ib

Ib

P20

Ia

V

V

IbV

VIb

V

V

P23

Ia

V

V

Ib

V

V,Ib

B4

V

B5

V,Ib

C4

C52

VIb

VIb

IbV

IbV

Ib

V,Ib

IbV

V

VID Translation at egress port

P24

C51

Ib

Ib

P25

X: Local VID

XY, YX: relay-VID X to local-VID Y Translation at egress port

X: Relay-VID

SVL: Shared VLAN Learning


E lan 1 domain1

V

I

V

I

V

I

R

R

E-LAN (1 domain)

C11

P11

VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links. A requirement in transport networks.

B1

C12

Q

P10

P13

P12

B3

P31

P30

P

C3

P32

P21

P23

R

B2

P20

C2

VLAN has different local VID values ‘P’, ‘Q’ and ‘R’ on the inner links B1-B2, B2-B3 and B3-B1

B1

V

C11

P11

V

P10

IV

V,I

IQ

VQ

B1

VI

C12

V

V

SVL

QI

QV

V

V,I

V

PI

PV

Q

V

I

V

B3

V

V,I

V

Q

P

C3

IV

IP

VP

V

I

R

Q

RI

RV

V

Q

V

B2

V

V,I

C2

P13

IR

VR

VI

VID Translation at ingress port

P12

P

XY, YX: local-VID Y to relay-VID X Translation at ingress port

X: local VID

X: Relay-VID

XY, YX: relay-VID X to local-VID Y Translation at egress port

SVL: Shared VLAN Learning


E lan 2 domains2

P

P

P

V

Ib

Ia

V

R

Ia

Ib

R

R

V

Ia

V

Ib

V

V

K

L

Ia

Ib

Ib

Ia

L

K

L

K

E-LAN (2 domains)

VLAN has different local VID values ‘P’, ‘Q’ and ‘R’ on the inner links B1-B2, B1-B3 and B3-B2

C11

VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links in both domains. A requirement in transport networks.

V

IV

V,I

IQ

VQ

B1

VI

C12

QI

QV

V

V,I

V

Q

V

PI

PV

B3

V

V,I

V

P

C3

IaP

V,IbP

IV

V

R

V,Ib

RI

RV

P

V,Ib

B2

B2

V

V,Ia,Ib

IaR

V,IbR

P21

C2

VIa,Ib

VLAN has different local VID values ‘K’, ‘L’ and ‘M’ on the inner links B2-B4, B2-B5 and B5-B4

V,Ia

KIb

KV,Ia

IbL

V,IaL

V,Ia

SVL

K

L

P20

R

V

V

LI

LV

VK

IK

V

V

P23

Ia

M

V

V

V

V,I

B4

V

B5

V,I

C4

C52

VI

VM

IM

MV

MI

IV

Ib

V,I

IV

V

P24

C51

VID Translation at ingress port

K

L

P25

XY, YX: local-VID Y to relay-VID X Translation at ingress port

X: Local VID

XY, YX: relay-VID X to local-VID Y Translation at egress port

X: Relay-VID

SVL: Shared VLAN Learning


Security in transport networks

Security in transport networks

  • In the previous E-LAN examples ingress VID Translation is not deployed at all input ports (e.g. not on P20)

  • With the “Ingress Filtering” parameter set to ‘disabled’ those VLAN connections are not secured; frames arriving on other input ports of e.g. node B4 with a local VID value ‘V’ can enter the E-LAN VLAN

  • This security issue is resolved when ingress VID translation is deployed at every input port

  • This prevents that frames with unexpected local VID values can access the port and intrude the VLANs


Vid translation for e lan 2 domains example

When using different VID values on the links between nodes it is required to identify the ports which form a group and ports which are individual

All individual ports must be associated with a relay VID (R-VID) value identifying Individual ports

Ports which form a group must be associated with a R-VID value identifying that group

Administration of individual ports and grouped ports is done via the Ingress VID Translation tables in each port(see next slide for example)

For node B2 the following applies:

Group 1: (P21,P23): R-VID: Ia

Group 2: (P24,P25): R-VID: Ib

Individual: P20: R-VID: V

For node B5:

Group 1: (P52,P54): R-VID: I

Individual: P50,P55: R-VID: V

VID Translation for E-LAN (2 domains) example

C11

VID: G

P11

VID: A

B1

C12

VID: Q

P10

P13

P12

B3

P31

P30

VID: P

C3

P32

VID:

F

P21

VID: R

P23

VID: B

B2

P20

C2

P24

P25

VID: K

VID: L

P42

P52

P55

P40

B4

P45

P54

B5

C4

C52

VID:

C

VID: M

VID: E

P50

VID: D

C51


Introduction 4083814

Using VIDs for manually configured optimum data distribution for E-LAN (2 domains) example using ingress VID translation on all ports


Port group concept in transport networks

Port Group concept in transport networks

  • The logical concept of a “Port Group” could be maintained in a transport network as a configuration element in the manually configured optimum data distribution for E-LAN connection management

    • Each port in a node in such E-LAN is marked as either an Individual Port or as a port in a Port Group #i (i≥1)

    • The ports in a Port Group will see their local VID values translated into a common relay VID value in the ingress VID translation process

      • Relay VID values for the individual and the port group ports have a node local scope; each node can select those values independent of other nodes


E tree

E-Tree


E tree types

E-Tree types

  • There are four types of E-Tree

    • Unidirectional P2MP E-Tree (outside scope of this document)

    • Bidirectional RMP E-Tree with single root and individual leaves

    • Bidirectional RMP E-Tree with multiple roots and individual leaves

    • Bidirectional RMP E-Tree with multiple roots, individual leaves and one or more leaf groups

  • The 4th type requires the use of the largest set of relay VID values and local VID values

    • Relay VIDs identify the frame’s source and potential set of destination ports: R, I, VG1 to VGN

    • Local VIDs identify the frame’s source port: root, individual leaf, leaf group #i

  • The 2nd type requires the use of two relay VID values (R, I) and one local VID value per link

    • Local VID identifies in the frame’s source port: root, individual leaf

    • Ingress VID translation converts local VID value to appropriate relay VID value

    • Egress VID translation converts both relay VID values to same local VID value

  • The 3rd type requires the use of two relay VID values (R, I) and one or two local VID values per link

    • Local VID values can not be pruned to single value on the links between the root ports

  • Next slides illustrate the 2nd, 3rd and 4th E-Tree types and their configuration details from the viewpoint of a transport network


E tree 1 root no leaf groups

Ports

Root: R1

Leaf: L1,L2,L3,L4,L51,L52

Local VID values

A to G, K, L, P, Q

Relay VID values

I, R

Single local VID value for both directions of transport per link, e.g.

B2-B4 link: K

Possible due to

usage of ingress and egress VID translation

single root

E-Tree (1 root, no leaf groups)

R1

G

P11

A

B1

L1

Q

P10

P13

P12

B3

P31

P30

P

L3

F

P21

B

B2

L2

P20

P24

P25

K

L

P42

P52

E

P40

B4

B5

L4

L52

C

P55

P50

D

L51


E tree 1 root no leaf groups1

P

P

P

R

I

R

R

R

L

K

I

I

K

L

B

I

E-Tree (1 root, no leaf groups)

R1

  • Graphical representation of configuration details…

G

RG

R,IG

R,I

AI

AR

IQ

RQ

A

B1

L1

Q,IR

QI

R

R

Q

R

PI

PR

F

B2

P

B3

P21

R

P

R,I

L3

RP

R,IP

IF

RF

R,I

B

B2

R

L2

BI

BR

P20

IL

RL

SVL

R

R

KI

KR

B

B

R

R

K

L

I

LR

LI,R

RK

R,IK

R,I

R,I

IE

RE

C

R

B4

B5

L4

L52

CI

CR

R

E

R

ID

RD

P24

D

L

P25

K

L51

XY, YX: local-VID Y to relay-VID X Translation at ingress port

X: Local VID

XY, YX: relay-VID X to local-VID Y Translation at egress port

X: Relay-VID

SVL: Shared VLAN Learning


Introduction 4083814

Using VIDs for manually configured optimum data distribution for E-Tree (1 root, no leaf groups) example


E tree 2 roots no leaf groups

Ports

Root: R1, R5

Leaf: L1,L2,L3,L4,L5

Local VID values

A to G, K, L, M, P, Q, R

Relay VID values

I, R

Single local VID value for both directions of transport for subset of links with only individual leaves behind it

B2-B4 link: K

Two local VID values for other subset of links with roots plus individual leaves behind it; i.e.

B1-B2 link: P, R

B2-B5 link: L, M

Possible due to

usage of ingress and egress VID translation

E-Tree (2 roots, no leaf groups)

R1

G

P11

A

B1

L1

Q

P10

P13

P12

B3

P31

P30

P

R

L3

F

P21

B

B2

P20

L2

1 local VID value

P24

P25

2 local VID values

M

K

L

P42

P52

P55

P40

B4

B5

L4

R5

C

E

P50

D

L5


E tree 2 roots no leaf groups1

P

R

P

R

R

R

I

I

I

R

R

M

L

K

R

I

I

M

K

L

B

I

E-Tree (2 roots, no leaf groups)

R1

  • Graphical representation of configuration details…

G

RG

R,IG

R,I

AI

AR

IQ

RQ

A

B1

L1

QR

QR,I

PI

PI

RR

RR

R

R

Q

R,I

F

B2

P

R

B3

P21

R,I

R

RR

RR

IP

IP

R

P

L3

IF

RF

R,I

B

B2

R

IL

IL

RM

RM

L2

BI

BR

P20

SVL

R

R,I

KI

KR

B

B

R

R

M

L

LI

LI

MR

MR

K

I

RK

R,IK

R,I

R,I

RE

R,IE

C

R

B4

B5

L4

R5

CI

CR

R,I

E

R

M

ID

RD

P24

P25

D

L

K

L5

XY, YX: local-VID Y to relay-VID X Translation at ingress port

X: Local VID

XY, YX: relay-VID X to local-VID Y Translation at egress port

SVL: Shared VLAN Learning

X: Relay-VID


Introduction 4083814

Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, no leaf groups) example


E tree 2 roots 1 leaf group

Ports

Root: R1, R5

Leaf: L1,L2,L3,L4,L5

Leaf group 1: LG14,LG13

Local VID values

A to H,J, K, L, M, N,O,P,Q, R,S,T

Relay VID values

I, R, VG1

E-Tree (2 roots, 1 leaf group)

R1

LG13

G

P11

A

J

B1

L1

Q

P10

P13

P33

T

P12

B3

P30

P

R

S

P31

L3

F

P21

B

B2

P20

L2

2 local VID values

P24

P25

3 local VID values

M

K

O

N

L

P42

P52

P55

P40

B4

B5

L4

R5

C

E

P50

P41

H

D

LG14

L5


E tree 2 roots 1 leaf group1

R

S

R

S

P

P

I

R

I

R

VG1

VG1

VG1

VG1

I

R

R

O

N

L

M

K

I

R

I

VG1

VG1

N

K

M

O

L

B

I

E-Tree (2 roots, 1 leaf group)

R1

  • Graphical representation of configuration details…

G

RG

R,I,VG1G

LG13

IQ

RQ

VG1T

VG1T

VG1J

VG1J

RJ

R,I,VG1

AI

AR

SVG1

SVG1

PI

PI

RR

RR

A

J

B1

L1

Q

QR

QI

TVG1

TVG1

R

R, VG1

R,VG1

VG1S

VG1S

IP

IP

RR

RR

T

R,I,VG1

F

B2

S

P

R

B3

P21

R

P

R

S

L3

IF

RF

VG1O

VG1O

IL

IL

RM

RM

R,I,VG1

B

B2

R

L2

BI

BR

KI

KR

NVG1

NVG1

P20

SVL

R,I,VG1

B

B

R,VG1

R

OVG1

OVG1

LI

LI

MR

MR

R

O

M

L

K

RK

R,IK

VG1N

VG1N

N

I

VG1

R,I,VG1

R,I,VG1

RE

R,I,VG1E

C

R

B4

B5

L4

R5

CI

CR

R,I,VG1

M

E

R,VG1

P25

R

HR

HVG1

HVG1

ID

RD

H

D

N

L

P24

K

LG14

O

L5

XY, YX: local-VID Y to relay-VID X Translation at ingress port

X: Local VID

XY, YX: relay-VID X to local-VID Y Translation at egress port

SVL: Shared VLAN Learning

X: Relay-VID


Introduction 4083814

Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, 1 leaf group) example


E lan e tree in itu t models

E-LAN/E-Tree in ITU-T models


G 8021 e lan e tree modelling

G.8021 E-LAN/E-Tree modelling

  • 802.1Q multi-VID E-LAN/E-Tree models can be 1-to-1 translated into G.8021 ETH layer model

    • Each relay VID reference point is represented by an ETH_FP (Flow Point) reference point

    • The multi relay-VID FID is represented by an “ETH Flow Forwarding (FF) process in SVL mode” within an ETH Connection function (see clause 9.1.1/G.8021)

Relay-VID ‘I’ learning and forwarding process

‘I’

Set of ETH_FPs represents EISS

Relay-VID reference point

Relay-VID ‘R’ learning and forwarding process

‘R’

VID Translation relates local VID with one or more ETH_FPs

ETH_AP represents ISS reference point

G.8021 ETH Flow Forwarding (FF) process in SVL mode

G.8021 ETH to ETH multiplexing adaptation function


Mep and mip functions in e lan e tree

MEP and MIP functions in E-LAN/E-Tree


Meps and mips in these e lan cases

P

P

P

V

Ib

Ia

V

R

Ib

Ia

R

R

B

Ia

B

Ib

V

V

K

L

Ib

Ia

Ib

Ia

L

K

L

K

B

V

MEPs and MIPs in these E-LAN cases

  • Looking at the model of E-LAN Node B2 I am wondering where the MEP and MIP functions should be located

  • Two locations are considered

    • Red

    • Green

  • Red locations imply that the VIDTranslation is located betweenthe UP MEPs and the MAC Relay, which is not consistent with itscurrent location in the clause 6.9Support of the EISS function

  • Green locations are consistent with802.1Q functionality order, but requireextensions to the G.8021 MEP Sink andMIP Sink functions, which currently do notsupport to read OAM from “multiple VIDs”

P

B2

P21

SVL

R

P20

B

V

V

P23

Ia

Ib

P24

K

L

P25


Meps and mips in these e tree cases

P

R

P

R

R

I

R

I

R

R

I

M

L

K

R

I

I

L

K

M

B

I

MEPs and MIPs in these E-Tree cases

  • Looking at the model of E-Tree Node B2 I am wondering where the MEP and MIP functions should be located

  • Two locations are considered

    • Red

    • Green

  • Red locations imply that the VIDTranslation is located betweenthe UP MEPs and the MAC Relay, which is not consistent with itscurrent location in the clause 6.9Support of the EISS function

  • Green locations are consistent with802.1Q functionality order

  • Both Red and Green locations requireextensions to the G.8021 MEP Sink and MIP Sinkfunctions to support reading from “multiple VIDs”

B2

P

P21

R

P20

SVL

B

B

R

R

I

M

P24

P25

L

K


Mep and mip primary vid assignments in e lan node b2

Up MEP and Half MIP functions have different primary VID (Ia) than Down MEP/Half MIP (V)

Up MEP and Half MIP functions have different primary VID (Ib) than Down MEP/Half MIP (V)

..

B

..

..

B

..

B

B

..

..

Ia

Ia

V

Ib

Ib

V

V

Ia

V

Ib

MEP and MIP primary VID assignments in E-LAN node B2

MAC Relay

Primary VID: V

Primary VID: Ia

Primary VID: Ib

Primary VID: V

Primary VID: Ia

Primary VID: Ib

Primary VID: V

Primary VID: V

Primary VID: V

Primary VID: V

Primary VID: V

Primary VID: V

V

Ia

Ib

Ia

Ib

V

Ib

V

Ia

V

P20

P21 and P23

P24 and P25

LAN

LAN

LAN

  • Up and Down MEP and Half MIP functions have same primary VID (V)

  • Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (V, Ia and Ib); configuration should be performed carefully


Mep and mip primary vid assignments in 3 rd type e tree node b2

Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R)

..

..

..

..

..

..

R

R

I

I

R

I

MEP and MIP primary VID assignments in 3rd type E-Tree node B2

MAC Relay

Primary VID: R

Primary VID: I

Primary VID: R

Primary VID: I

Primary VID: R

Primary VID: R

Primary VID: R

Primary VID: R

I

I

R

I

R

R

P21 and P25

P20 and P24

LAN

LAN

  • Up and Down MEP and Half MIP functions have same primary VID (R)

  • Primary VID values for the Up MEP/HalfMIP functions on the two port sets are different (R and I); configuration should be performed carefully


Mep and mip primary vid assignments in 4 th type e tree node b2

Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R)

..

K

B

N

..

B

..

..

..

..

K

N

R

I

R

R

R

I

I

I

VG1

VG1

VG1

VG1

MEP and MIP primary VID assignments in 4th type E-Tree node B2

MAC Relay

Primary VID: R

Primary VID: I

Primary VID: I

Primary VID: R

Primary VID: I

Primary VID: I

Primary VID: R

Primary VID: R

Primary VID: R

Primary VID: R

Primary VID: R

Primary VID: R

VG1

I

I

I

R

I

R

R

VG1

VG1

R

VG1

P21 and P25

P20

P24

LAN

LAN

LAN

  • Up and Down MEP and Half MIP functions have same primary VID (R)

  • Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R)

  • Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (R and I); configuration should be performed carefully


G 8021 mep mip functions

G.8021 MEP/MIP functions

  • G.8021 ETH MIP function has single ETH_FP

    • To support the multi-VID E-Tree the G.8021 MIP function should get multiple ETH_FPs

    • OAM XXM frames may ingress on each of those ETH_FPs and the associated XXR frames may egress on the primary_ETH_FP

  • G.8021 specifies ETH MEP and ETHG MEP functions

    • ETH MEP function contains a single ETH_FP

    • ETHG MEP function contains multiple ETH_FPs

      • OAM frames can be read/extracted from one ETH_FP only

      • OAM frames can be generated/inserted into one ETH_FP only

    • The multi-VID E-Tree models require and ETH MEP function with multiple ETH_FPs, with reading/extracting capabilities of OAM frames on every ETH_FP and generating/inserting capabilities of OAM frames on the primary_ETH_FP only

      • ETH and ETHG MEP functions could be merged into one ETH MEP function, or alternatively the ETH MEP function can be left unchanged and the ETHG MEP function can be extended to read/extract OAM from every ETH_FP


  • Login