2 3 4
This presentation is the property of its rightful owner.
Sponsored Links
1 / 63

2 . 3.4  平面与平面垂直的性质 PowerPoint PPT Presentation


  • 81 Views
  • Uploaded on
  • Presentation posted in: General

2 . 3.4  平面与平面垂直的性质. 1 .两个平面垂直的性质定理 如果两个平面垂直,那么在一个平面内 的直线垂直于另一个平面.用数学符号表示为 . 2 .重要结论: (1) 如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,必在 .用数学符号表示为 . (2) 如果两个平面互相垂直,第一个平面内一点在第二个平面内的射影一定落在 .. 垂直于交线. α ⊥ β , α ∩ β = b , a ⊂ β , a ⊥ b ⇒ a ⊥ α. 第一个平面内. A ∈ β , α ⊥ β , A ∈ a , a ⊥ α ⇒ a ⊂ β.

Download Presentation

2 . 3.4  平面与平面垂直的性质

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


2 3 4

  • 23.4


2 3 4

  • 1

  • .

  • 2(1)

  • .

  • (2)

baaba

AAaaa


2 3 4

  • 3(1)ABCPABCO

  • PAPBPCOABC

  • *PABCOABC

  • PAPBPCOABC

  • (2)ACBPACBO

  • PCAPCBO.

  • PBCA

  • O.

BCA

BCA


2 3 4

  • 4mn

  • ()

  • mmmnmnmnmmnn

  • AB

  • C D


2 3 4

  • []D

  • []

  • ()


2 3 4

  • ABSABCDSCDABCD.

  • SABSCD

  • naan.

  • mnmnma

  • ma.D.


2 3 4


2 3 4


2 3 4

  • [1]lAB4cmACBDAClBDlAC3cmBD12cmCD


2 3 4

  • []CDBDlBCDRtBDBCAClABCRt

  • []AClAC3AB4BC5.

  • BDllBDBDBC

  • BDBCRtBDCDC 13CD13cm.


2 3 4

  • []CDRtBDCRtACD.


2 3 4

  • PABCDPAABCDABADACCDABC60PAABBCEPC

  • (1)CDAE

  • (2)PDABE.


2 3 4

  • [](1)PABCD

  • PAABCDCDABCDPACD.

  • ACCDPAACACDPAC.

  • AEPACCDAE.


2 3 4

  • (2)PAABBCABC60ACPA.

  • EPCAEPC.

  • (1)AECDPCCDC

  • AEPCD.

  • PDPCDAEPD.

  • PAABCDABPA

  • ABADABPADABPD.

  • ABAEAPDABE.


2 3 4

  • [2]l

  • l


2 3 4

  • []1PPAAPBBPAPBllPAlPBPAPBPAPBl.


2 3 4

  • 2mnmnmnnmmlmll.


2 3 4

  • l


2 3 4

  • bbb.lBbBBaBa

  • babba

  • aaBb.

  • aallb.


2 3 4

  • VABCVBABCVABVACABC

  • []


2 3 4

  • []BBDVAD

  • VABVACBDVAC

  • BDACVBABCVBAC

  • ACVABACBAABC.


2 3 4

  • [3]SAABCABBCSAABSBBCESCDESCACD.EBDC


2 3 4

  • EDCEBDC

  • SAaSBBC a

  • BCABSAABCBCSB.

  • SC2aSCD30EDC60

  • EBDC60.


2 3 4

  • [4]llAABBABlABCDA1B1C1D1AA15AB12B1C1A1BCD1__________


2 3 4

  • []B1EA1BA1D1ABB1A1B1EABB1A1A1D1B1E

  • A1BA1D1A1B1EA1BCD1B1EB1C1A1BCD1BB15A1B112A1B1B90B1E


2 3 4

  • *PABCDPAABCDQAPABAP2BC4PBQD________


2 3 4

  • []QPA

  • PQBDAQBDACABDAEBDEQE

  • PAABCDBDPA

  • BDQAE.

  • QAEAAHQEQEH.BDAHAHBQD.

  • ABQDAH.


2 3 4

  • [5]ABabab.ab.


2 3 4

  • []aABABa

  • aABaCCDABDCDbCDb

  • baCDacb


2 3 4

  • (1)ABababABab

  • (2)ababa


2 3 4

  • [](1)()ab

  • aABaPPHABH

  • PHbPHb

  • abaPHPb.AB

  • bABbABab


2 3 4

  • (2)aaaaa

  • ababaa.


2 3 4

  • [6]RtABCABACADBCADABDBDC

  • (1)ABDBDC.

  • (2)BAC60.

  • (3)ABDC

  • (4)DABC


2 3 4

  • []RtABCADBCADBDADCD(1)(2)(3)

  • (4)BDCBCEBCADE

  • ABCADEAEDABCDAEADERt


2 3 4

  • [](1)ADBDADDCBDDCD

  • ADBDC

  • ADABD.

  • ABDBDC.


2 3 4

  • (4)BCEABACBDDCDEBCAEBCBCADE

  • ABCADE.

  • DDMAEMDMABCDMDABC


2 3 4

  • []1(4)VABDCVDABC.

  • 2

  • lala

  • bcbcAabaca

  • abba

  • baaba

  • 3

  • aa


2 3 4

  • [7]ABCDBAC30ABaADBCEFGHABBDDCCAEFGH.

  • (1)EFGH

  • (2)PADAPPBCEFGH


2 3 4

  • [](1)

  • EFAD

  • HGEFEHFG

  • EFGH

  • ABCD

  • AOBCD

  • DOBCAOBCBCAOD

  • ADBCHGEHEFGH


2 3 4

  • (2)CPADPBP

  • ADBCADBCP

  • HGADHGBCP

  • HGEFGHBCPEFGH

  • RtAPCCAP30ACaAP


2 3 4

  • ABCDAB1BCa(a>0)PAABCDBCQPQQDa________

  • []0.72


2 3 4

  • []1PQQDPAABCD

  • AQQD.

  • BQx(0<x<a)CQax

  • AD2AQ2DQ2AB2BQ2CQ2DC2.

  • a21x2(ax)21.x2ax10()

  • a24>0()


2 3 4

  • []1aBCQPQQD2a


2 3 4

  • 1

  • ()


2 3 4

  • A4B3C2D1

  • []B

  • []B.


2 3 4

  • 2xyzxyxzyzxyz

  • ()

  • Axyz

  • Bxyz

  • Cxyz

  • Dxyz

  • []D


2 3 4

  • []ABCD


2 3 4

  • 3(20104)abc

  • abbcac

  • abbcac

  • abab

  • abab.

  • ()

  • A B

  • C D


2 3 4

  • []C

  • []

  • abbcac.


2 3 4

  • abab


2 3 4

  • 4ABCP246 P__________

  • []12


2 3 4

  • 5201512________

  • []480

  • []ACC1A1ACOBACBOBAA1

  • OBACC1A1OB12OA20AB16AC32AA115SACAA1480.


2 3 4

  • 6

  • ..

  • []ab.ab.

  • cac.

  • cc.


  • Login