1 / 38

Structures, ADT

Structures, ADT. Lecture 25 14/3/2002. Announcements. Lab Test 2 on the week of 18 th – 22 nd March Syllabus for lab test : arrays, structures, data types, …. The List ADT. A list : <A1, A2, ... , AN> of size N. Special list of size 0 : an empty list Operations:

neylan
Download Presentation

Structures, ADT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Structures, ADT Lecture 25 14/3/2002 Sudeshna Sarkar, CSE, IIT Kharagpur

  2. Announcements • Lab Test 2 on the week of 18th – 22nd March • Syllabus for lab test : arrays, structures, data types, ….. Sudeshna Sarkar, CSE, IIT Kharagpur

  3. The List ADT • A list : <A1, A2, ... , AN> of size N. • Special list of size 0 : an empty list • Operations: • makenull () : returns an empty list • makelist (elem) : makes a list containing a single element • printlist (list) • search(elem, list) : searches whether a key is in the list • insert (elem, list) • delete (elem, list) • findKth (list) Sudeshna Sarkar, CSE, IIT Kharagpur

  4. Array Implementation of List typedef int ETYPE; typedef struct { ETYPE elements[MAXS]; int size; } LIST; LIST makenull () ; LIST makeList (ETYPE) ; void printList (LIST) ; int IsEmpty (LIST) ; int search (ETYPE, LIST) ; void delete (ETYPE, LIST * ); void insert (ETYPE, LIST * ) Sudeshna Sarkar, CSE, IIT Kharagpur

  5. Complex Number ADT typedef struct { float real; float imag; } COMPLEX; COMPLEX makecomplex (float, float) ; COMPLEX addc (COMPLEX, COMPLEX); COMPLEX subc (COMPLEX, COMPLEX); COMPLEX multc (COMPLEX, COMPLEX); COMPLEX divc (COMPLEX, COMPLEX); Sudeshna Sarkar, CSE, IIT Kharagpur

  6. SET ADT • Interface functions (1): SET makenullset () ; int member (ETYPE, SET) ; SET adjoin (ETYPE, SET); SET union (SET, SET) ; SET intersection (SET, SET); Void printset (SET) ; Interface functions (2): SET makenullset () ; int member (ETYPE, SET) ; void adjoin(ETYPE, SET *); void union (SET, SET, SET*); void intersection (SET, SET, SET*); Void printset (SET) ; Sudeshna Sarkar, CSE, IIT Kharagpur

  7. Concrete implementation of SET ADT typedef struct { ETYPE elem[MAX]; int size; } SET; Implementation 1 : sorted array adjoin : Sorted insert member : Binary search delete : ? union : merge 2 sorted arrays intersection : ? Sudeshna Sarkar, CSE, IIT Kharagpur

  8. Concrete implementation of SET ADT typedef struct { ETYPE elem[MAX]; int size; } SET; Implementation 2 : unsorted array keep the elements in the array unsorted. adjoin : Insert at the end member : Search till found or till the end delete : Go through the array sequentially until element is found, or reach the end. Then left shift the array. union , intersection ? Sudeshna Sarkar, CSE, IIT Kharagpur

  9. Arrays of Structures • A struct represents a single record. • Typically structs are used to deal with collections of such records • Examples : student records, employee records, book records, ... • In each case we will hav multiple instances of the struct type. Arrays of structs are the natural way to do this. Sudeshna Sarkar, CSE, IIT Kharagpur

  10. Arrays of structs : declaration & use Each declaration below declares an array, where each array element is a structure: point corner_points[10] ; StudentRecord btech01[MAXS] ; We access a field of a struct in an array by specifying the array element and then the field : btech01[i].name corner_points[4].x Sudeshna Sarkar, CSE, IIT Kharagpur

  11. Naming in struct Arrays point pentagon[5]; pentagon : an array of points x y pentagon[1] : a point structure x y x y pentagon[4].x : a double x y x y Sudeshna Sarkar, CSE, IIT Kharagpur

  12. Using Arrays of structs StudentRecord class[MAXS]; ... for (i=0; i<nstudents; i++) { scanf (“%d%d”, &class[i].midterm, &class[i].final); class[i].grade = (double)(class[i].midterm+class[i].final)/50.0; } Sudeshna Sarkar, CSE, IIT Kharagpur

  13. struct Array elements as parameters void draw_line (point p1, point p2) { ... } ... point pentagon[5]; ... for (i=0;i<4;i++) draw_line (pentagon[i], pentagon[i+1]); draw_line (pentagon[4], pentagon[0]); Sudeshna Sarkar, CSE, IIT Kharagpur

  14. structs as Parameters • A single struct is passed by value. • all of its components are copied from the argument (actual parameter) to initialize the (formal) parameter. point set_midpt (point a, point b) { ... } int main (void) { point p1, p2, m; ... m = set_midpt(p1, p2); } Sudeshna Sarkar, CSE, IIT Kharagpur

  15. Passing Arrays of structs • An array of structs is an array. • When any array is an argument (actual parameter), it is passed by reference, not copied [As for any array] • The parameter is an alias of the actual array argument. int avg (StudentRec class[MAX]) { ... } int main (void) { StudentRec bt01[MAX]; int average; ... average = avg_midpt(bt01) ; } Sudeshna Sarkar, CSE, IIT Kharagpur

  16. Dynamic Memory Allocation,Structure pointers Lecture 26 14.3.2002. Sudeshna Sarkar, CSE, IIT Kharagpur

  17. Basic Idea • Many a time we face situations where data is dynamic in nature. • Amount of data cannot be predicted beforehand. • Number of data item keeps changing during program execution. • Such situations can be handled more easily and effectively using dynamic memory management techniques. Sudeshna Sarkar, CSE, IIT Kharagpur

  18. C language requires the number of elements in an array to be specified at compile time. • Often leads to wastage or memory space or program failure. • Dynamic Memory Allocation • Memory space required can be specified at the time of execution. • C supports allocating and freeing memory dynamically using library routines. Sudeshna Sarkar, CSE, IIT Kharagpur

  19. Memory Allocation Process in C Local variables Stack Free memory Heap Global variables Permanent storage area Instructions Sudeshna Sarkar, CSE, IIT Kharagpur

  20. The program instructions and the global variables are stored in a region known as permanent storage area. • The local variables are stored in another area called stack. • The memory space between these two areas is available for dynamic allocation during execution of the program. • This free region is called the heap. • The size of the heap keeps changing Sudeshna Sarkar, CSE, IIT Kharagpur

  21. Memory Allocation Functions • malloc: Allocates requested number of bytes and returns a pointer to the first byte of the allocated space. • calloc: Allocates space for an array of elements, initializes them to zero and then returns a pointer to the memory. • free : Frees previously allocated space. • realloc: Modifies the size of previously allocated space. Sudeshna Sarkar, CSE, IIT Kharagpur

  22. Dynamic Memory Allocation • used to dynamically create space for arrays, structures, etc. int main () { int *a ; int n; .... a = (int *) calloc (n, sizeof(int)); .... } a = malloc (n*sizeof(int)); Sudeshna Sarkar, CSE, IIT Kharagpur

  23. Space that has been dynamically allocated with either calloc() or malloc() does not get returned to the function upon function exit. • The programmer must use free() explicitly to return the space. • ptr = malloc (...) ; • free (ptr) ; Sudeshna Sarkar, CSE, IIT Kharagpur

  24. void read_array (int *a, int n) ; int sum_array (int *a, int n) ; void wrt_array (int *a, int n) ; int main () { int *a, n; printf (“Input n: “) ; scanf (“%d”, &n) ; a = calloc (n, sizeof (int)) ; read_array (a, n) ; wrt_array (a, n) ; printf (“Sum = %d\n”, sum_array(a, n); } Sudeshna Sarkar, CSE, IIT Kharagpur

  25. void read_array (int *a, int n) { int i; for (i=0; i<n; i++) scanf (“%d”, &a[i]) ; } void sum_array (int *a, int n) { int i, sum=0; for (i=0; i<n; i++) sum += a[i] ; return sum; } void wrt_array (int *a, int n) { int i; ........ } Sudeshna Sarkar, CSE, IIT Kharagpur

  26. Arrays of Pointers • Array elements can be of any type • array of structures • array of pointers Sudeshna Sarkar, CSE, IIT Kharagpur

  27. int main (void) { char word[MAXWORD]; char * w[N]; /* an array of pointers */ int i, n; /* n: no of words to sort */ for (i=0; scanf(“%s”, word) == 1); ++i) { w[i] = calloc (strlen(word)+1, sizeof(char)); if (w[i] == NULL) exit(0); strcpy (w[i], word) ; } n = i; sortwords (w, n) ; wrt_words (w, n); return 0; } Sudeshna Sarkar, CSE, IIT Kharagpur

  28. Input : A is for apple or alphabet pie which all get a slice of come taste it and try w 0 A \0 1 i s \0 2 f o r \0 3 a p p l e \0 17 t r y \0 Sudeshna Sarkar, CSE, IIT Kharagpur

  29. void sort_words (char *w[], int n) { int i, j; for (i=0; i<n; ++i) for (j=i+1; j<n; ++j) if (strcmp(w[i], w[j]) > 0) swap (&w[i], &w[j]) ; } void swap (char **p, char **q) { char *tmp ; tmp = *p; *p = *q; *q = tmp; } Sudeshna Sarkar, CSE, IIT Kharagpur

  30. Before swapping w w[i] f o r \0 a p p l e \0 w[j] Sudeshna Sarkar, CSE, IIT Kharagpur

  31. After swapping w w[i] f o r \0 a p p l e \0 w[j] Sudeshna Sarkar, CSE, IIT Kharagpur

  32. Pointers to Structure Sudeshna Sarkar, CSE, IIT Kharagpur

  33. Pointers and Structures • You may recall that the name of an array stands for the address of its zero-th element. • Also true for the names of arrays of structure variables. • Consider the declaration: struct stud { int roll; char dept_code[25]; float cgpa; }class[100], *ptr ; Sudeshna Sarkar, CSE, IIT Kharagpur

  34. The name class represents the address of the zero-th element of the structure array. • ptr is a pointer to data objects of the type struct stud. • The assignment ptr = class ; • will assign the address of class[0] to ptr. • When the pointer ptr is incremented by one (ptr++) : • The value of ptr is actually increased by sizeof(stud). • It is made to point to the next record. Sudeshna Sarkar, CSE, IIT Kharagpur

  35. Once ptr points to a structure variable, the members can be accessed as: ptr –> roll ; ptr –> dept_code ; ptr –> cgpa ; • The symbol “–>” is called the arrow operator. Sudeshna Sarkar, CSE, IIT Kharagpur

  36. Warning • When using structure pointers, we should take care of operator precedence. • Member operator “.” has higher precedence than “*”. • ptr –> roll and (*ptr).roll mean the same thing. • *ptr.roll will lead to error. • The operator “–>” enjoys the highest priority among operators. • ++ptr –> roll will increment roll, not ptr. • (++ptr) –> roll will do the intended thing. Sudeshna Sarkar, CSE, IIT Kharagpur

  37. Program to add two complex numbers using pointers typedef struct { float re; float im; } complex; main() { complex a, b, c; scanf (“%f %f”, &a.re, &a.im); scanf (“%f %f”, &b.re, &b.im); add (&a, &b, &c) ; printf (“\n %f %f”, c,re, c.im); } Sudeshna Sarkar, CSE, IIT Kharagpur

  38. void add (complex * x, complex * y, complex * t){ • t->re = x->re + y->re ; • t->im = x->im + y->im ; • } Sudeshna Sarkar, CSE, IIT Kharagpur

More Related