Formulation du probl me
This presentation is the property of its rightful owner.
Sponsored Links
1 / 13

Formulation du problème PowerPoint PPT Presentation


  • 48 Views
  • Uploaded on
  • Presentation posted in: General

Formulation du problème. Durant son exploitation, la charge d`un réseau électrique de distribution a une évolution croissante.

Download Presentation

Formulation du problème

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Formulation du probl me

Formulation du problème

  • Durant son exploitation, la charge d`un réseau électrique de distribution a une évolution croissante.

  • La charge électrique peut atteindre des valeurs - dites de frontière - où les coûts des pertes sont aussi grandes que le coût d’investissement dans une ligne électrique supplémentaire.


Formulation du probl me

Pour un circuit à section s, à longueur L, à charge (courant) I de durée maximale annuelle, les dépenses totales actualisées pour une durée d`étude t et une longueur unitaire de la ligne comprennent:


Formulation du probl me

  • Un circuit supplémentaire est justifie en partant de la charge de frontière dont la valeur sera IM ; à cette valeur, il y a l`égalité entre les dépenses totales actualisées pour les situations suivantes:

  • La charge maximale de frontière IM sera distribuée par la ligne actuelle, ayant la section se

  • La charge maximale IM sera redistribuée entre le circuit ayant la section se et un circuit supplémentaire, ayant la section ss, ainsi que:

  • IM = Ie + Is (1)


Formulation du probl me

Il en resulte :

On donne l`expression:

et l`on obtient de l`equation (3):


Formulation du probl me

  • De (3) résulte la valeur de la charge de frontière IM :

  • Au-delà de cette frontière, la construction d`une ligne supplémentaire sera justifiée


Formulation du probl me

  • αs est un paramètre qui aura des valeurs différentes, chacune correspondant à une certaine hypothèse de développement du réseau électrique qu`on considère.

  • Si on donne l`expression de jec comme densité économique du courant

  • Alors la valeur maximale de frontière sera:


Formulation du probl me

HYPOTHESES CONCERNANT LE DEVELOPPEMENT DU RESEAU(1)

  • On utilise un circuit supplémentaire avec une section sM; en ce cas:

  • On considère la charge du circuit supplémentaire tenant compte des possibilités du réseau :

    αs<(0,4 - 0,5) IM


Formulation du probl me

HYPOTHESES CONCERNANT LE DEVELOPPEMENT DU RESEAU(2)

  • On utilise un circuit supplémentaire avec une section sM; en ce cas:

  • La charge du circuit supplémentaire sera ainsi que la densité de courant sera la même dans les deux circuits:

    Ie / Is = sM / se

    αs = s e / (se + ss) < 0,5


Formulation du probl me

HYPOTHESES CONCERNANT LE DEVELOPPEMENT DU RESEAU(3)

  • On utilise un circuit supplémentaire avec une section se; en ce cas:

  • On considère la charge du circuit supplémentaire tenant compte des possibilités du réseau :

    αs<(0,4 - 0,5) IM


Formulation du probl me

HYPOTHESES CONCERNANT LE DEVELOPPEMENT DU RESEAU(4)

  • On utilise un circuit supplémentaire dont la section sera choisie ainsi que les deux circuits fonctionnent avec des densités de courant proches à la densité économique;

    Ie ~ se. jec

    αs = 1/ (1 + se / ss)


Formulation du probl me

CONCLUSIONSPour les réseaux électriques de distribution on peut calculer les charges maximales efficientes du point de vue économique. Ces charges, harmonisées avec la charge thermique limite de la section, permettent d’établir les possibilités d’utilisation intensive des réseaux électriques en exploitation.


Tableau 1 valeurs de

Tableau 1 - Valeurs de β

separametre s

ss0,10,20,30,40,50,6

0,42,321,701,451,321,241,20

0,52,321,711,471,341,261,23

0,62,331,731,481,361,291,27

0,72,341,741,501,381,321,30

0,82,341,751,511,401,351,35

0,92,351,761,531,421,381,39

12,361,771,541,441,411,44

1,12,361,781,561,471,451,50

1,22,371,791,581,491,491,57


Tableau 2 les frontieres economiques i m

Tableau 2- Les frontieres economiques IM


  • Login