1 / 73

TM 661 Engineering Economics for Managers

TM 661 Engineering Economics for Managers. Risk Analysis. A A A A A. MARR = 15%. 1 2 3 4 5. 10,000. Motivation. Suppose we have the following cash flow diagram. NPW = -10,000 + A(P/A, 15, 5). 2. ,. 000. p. . 1. /. 6. .

Download Presentation

TM 661 Engineering Economics for Managers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TM 661Engineering Economics for Managers Risk Analysis

  2. A A A A A MARR = 15% 1 2 3 4 5 10,000 Motivation Suppose we have the following cash flow diagram. NPW = -10,000 + A(P/A, 15, 5)

  3. 2 , 000 p  1 / 6   A  3 , 000 p  2 / 3   4 , 000 p  1 / 6  Motivation Now suppose that the annual return A is a random variable governed by the discrete distribution:

  4. 2 , 000 p  1 / 6   A  3 , 000 p  2 / 3   4 , 000 p  1 / 6  Motivation For A = 2,000, we have NPW = -10,000 + 2,000(P/A, 15, 5) = -3,296

  5. 2 , 000 p  1 / 6   A  3 , 000 p  2 / 3   4 , 000 p  1 / 6  Motivation For A = 3,000, we have NPW = -10,000 + 3,000(P/A, 15, 5) = 56

  6. 2 , 000 p  1 / 6   A  3 , 000 p  2 / 3   4 , 000 p  1 / 6  Motivation For A = 4,000, we have NPW = -10,000 + 4,000(P/A, 15, 5) = 3,409

  7. Motivation There is a one-for-one mapping for each value of A, a random variable, to each value of NPW, also a random variable. A 2,000 3,000 4,000 p(A) 1/6 2/3 1/6 NPW -3,296 56 3,409 p(NPW) 1/6 2/3 1/6

  8. Spreadsheet

  9. A1 A2 A3 A4 A5 MARR = 15% 1 2 3 4 5 10,000 Risk Analysis Now Suppose the return in each year is a random variable governed by the some probability distribution. NPW = -10,000 + A1(1+i)-1 + A2(1+i)-2 + . . . + A5(1+i)-5

  10. A1 A2 A3 A4 A5 MARR = 15% 1 2 3 4 5 10,000 5    10 , 000  a A t t t  1 where a  ( 1  i )  t t Risk Analysis NPW = -10,000 + A1(1+i)-1 + A2(1+i)-2 + . . . + A5(1+i)-5

  11. Risk Analysis Now suppose At iid N(3,000, 250) NPW is a linear combination of normals  

  12. Risk Analysis Now suppose At iid N(3,000, 250) NPW is a linear combination of normals NPW Normal    Central Limit

  13. Risk Analysis Now suppose At iid N(3,000, 250) NPW is a linear combination of normals NPW Normal NPW N(NPW, NPW)    

  14. 5    E [ NPW ]  E [  10 , 000  a A NPW t t t  1 Mean Recall: E[Z] = E[X1] + E[X2] E[aX+b] = aE[X] + b

  15. 5    E [ NPW ]  E [  10 , 000  a A NPW t t t  1 5     10 , 000  a E [ A ] NPW t t t  1 Mean Recall: E[Z] = E[X1] + E[X2] E[aX+b] = aE[X] + b

  16. 5     10 , 000  a E [ A ] NPW t t t  1 5     10 , 000  a [ 3,000 ] NPW t t  1 Mean but, E[At] = 3,000

  17. 5     10 , 000  a [ 3,000 ] NPW t t  1 5  a = -10,000 + 3,000 t t  1 5  (1+i)-t = -10,000 + 3,000 t  1 Mean = -10,000 + 3,000(P/A, i, 5)

  18.  2   2 (  10 , 000  a A ) NPW t t Variance Recall: 2(z) = 2(x) + 2(y) 2(ax+b) = a22

  19.  2   2 (  10 , 000  a A ) NPW t t 2   2  a  2 NPW A t t Variance Recall: 2(z) = 2(x) + 2(y) 2(ax+b) = a22

  20. 2   2  a  2 (At) NPW t  2 ( A )  250 2 t 2   2  ( 250 ) 2 a NPW t Variance but, = (250)2 [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10]

  21. 2   2  ( 250 ) 2 a A=(250)2 NPW t 1 2 3 4 5 6 7 8 9 10 P=s2NPW Variance = (250)2 [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10] Note that [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10 ] is just a 5 period annuity factor where the period is 2 years.

  22. 2   2  ( 250 ) 2 a A=(250)2 NPW t 1 2 3 4 5 6 7 8 9 10 P=s2NPW Variance = (250)2 [(1+i)-2 + (1+i)-4 + . . . + (1+i)-10] = (250)2(P/A, ieff, 5) , ieff = (1+i)2 -1

  23. A1 A2 A3 A4 A5 1 2 3 4 5   At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% mNPW = -10,000 + 3,000(P/A, 15, 5) = -10,000 + 3,000(3.3522) = $56

  24. A1 A2 A3 A4 A5 1 2 3 4 5   At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% ieff = (1.15)2 - 1 = 32.25% NPW = -10,000 + 3,000(P/A, 15, 5) = -10,000 + 3,000(3.3522) = $56

  25. A1 A2 A3 A4 A5 1 2 3 4 5   At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% ieff = (1.15)2 - 1 = 32.25% NPW = -10,000 + 3,000(P/A, 15, 5) = -10,000 + 3,000(3.3522) = $56 s2NPW = (250)2(P/A, 32.25, 5) = 62,500(2.3343) = 145,894

  26. A1 A2 A3 A4 A5 1 2 3 4 5   At iid N(3,000, 250) 10,000 Risk Analysis MARR = 15% NPW = $56 s2NPW = 145,894 s = 382 NPW  N(56, 382)

  27. A1 A2 A3 A4 A5 N(56, 382) 1 2 3 4 5   At iid N(3,000, 250) 10,000 -1,090 56 1,202 Risk Analysis MARR = 15% NPW  N(56, 382)

  28. A1 A2 A3 A4 A5 N(56, 382) 1 2 3 4 5 10,000 -1,090 56 1,202 - m - NPW 0 56 < = < NPW P ( NPW 0 ) P s 382 NPW Risk Analysis NPW  N(56, 382)

  29. A1 A2 A3 A4 A5 N(56, 382) 1 2 3 4 5 10,000 -1,090 56 1,202 - m - NPW 0 56 < = < NPW P ( NPW 0 ) P s 382 NPW Risk Analysis NPW  N(56, 382) = P( Z < -0.15 ) = 0.44

  30. Review

  31. A1 A2  5 , 000 , 0 . 6 If Ai iid    7 , 000 , 0 . 4  10,000 Class Problem You are given the following cash flow diagram: Compute the distribution for the Net Present Worth if the MARR = 15%.

  32. Class Problem

  33. A1 A2 A3 A4 A5 35,000 If Ai iid N(10,000, 300)   Class Problem You are given the following cash flow diagram: If the MARR = 15%, what is the probability this investment alternative is no good?

  34. 2 2  2  4  10  ( NPW )  300 [( 1 . 15 )  ( 1 . 15 )  . . .  ( 1 . 15 ) ] Class Problem E[NPW] = -35,000 + 10,000(P/A, 15, 5) = -35,000 + 10,000(3.3522) = - 1,478 = 3002 (2.3343) = 210,087 

  35. NPW   0  (  1 , 478 )   P      458   1 . 0 Class Problem NPW N(-1,478 , 458) P{NPW < 0} =  = P{Z < 3.27}

  36. A1 A2 A3 A4 A5 35,000   If Ai iid N(10,000, 300) A Critical Thunk Max Ai 10,900

  37. A1 A2 A3 A4 A5 35,000 A Critical Thunk If Max Ai 10,900 NPW = -35,000 + 10,900(P/A, 15, 5) = -35,000 + 10,900(3.3522) = 1,539

  38. A1 A2 10,000 A Twist Suppose we have the following cash flow diagram. If Ai iid U(5000, 7000)   Now how can we compute the distribution of the NPW? MARR = 15%.

  39. Solution Alternatives • Assume normality

  40. Solution Alternatives • Assume normality • Upper/Lower Bounds • Laplace Transforms • Transformation/Convolution • Simulation

  41. A1 A2 10,000 Simulation Let us arbitrarily pick a value for A1 and A2 in the uniform range (5000, 7000). Say A1 = 5,740 and A2 = 6,500.

  42. A1 A2 5,740 6,500 10,000 10,000 Simulation NPW = -10,000 + 5,740(1.15)-1 + 6,500(1.15)-2 = (93.96)

  43. A1 A2 5,740 6,500 10,000 10,000 Simulation We now have one realization of NPW for a given realization of A1 and A2.

  44. A1 A2 5,740 6,500 10,000 10,000 Simulation We now have one realization of NPW for a given realization of A1 and A2. Choose 2 new values for A1, A2.

  45. A1 A2 6,820 6,218 10,000 10,000 A1 = 6,820 A2 = 6,218 NPW = -10,000 + 6,820(1.15)-1 + 6,218(1.15)-2 = 632.14

  46. Summary A1 A2 NPW 5,740 6,500 (93.96) 6,820 6,218 632.14 Choose 2 new values.

  47. A1 A2 5,273 6,422 10,000 10,000 A1 = 5,273 A2 = 6,422 NPW = -10,000 + 5,273(1.15)-1 + 6,422(1.15)-2 = (558.83)

  48. Summary A1 A2 NPW 5,740 6,500 (93.96) 6,820 6,218 632.14 5,273 6,422 (558.83) Choose 2 new values.

  49. Summary A1 A2 NPW 5,740 6,500 (93.96) 6,820 6,218 632.14 5,273 6,422 (558.83) . . . 6,855 5,947 457.66

  50. Freq. NPW -1,871 0 1,380 Simulation With enough realizations of A1, A2, and NPW, we can begin to get a sense of the distribution of the NPW.

More Related