1 / 31

Normal Order & Graphs

Normal Order & Graphs. Paweł Błasiak & Andrzej Horzela . Combinatorial graffiti. Institute of Nuclear Physic s, Polish Academy of Sciences. Collaboration:. Karol A. Penson , Université Paris VI Allan I. Solomon, Open Univ ersity ( UK ) Gérard Duchamp, Université de Paris-Nord.

neith
Download Presentation

Normal Order & Graphs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Normal Order & Graphs Paweł Błasiak & Andrzej Horzela Combinatorial graffiti Institute of Nuclear Physics,Polish Academy of Sciences Collaboration: Karol A. Penson, Université Paris VI Allan I. Solomon, Open University(UK) Gérard Duchamp, Universitéde Paris-Nord

  2. Content • Theme: See operators as graphs • Introduction • Operators in Quantum Mechanics • Occupationnumber representation • Graphs • Definitions and Examples • Algebra of graph composition • Operators vs Graphs • Equivalence and calculus

  3. Occupation number representation • Number operator Nnnn • Basis in Fock space 0, 1, 2, …… , n1, n, n+1, …… annihilation creation • Operators [a+,N]a+ ladder structure a+n n+1n+1 annihilationoperator [a,N]a creationoperator a nnn1 Heisenberg algebra [a,a+]1 ICSSUR 2007, Bradford

  4. Commutation • Creation and annihilation operators do notcommute • a a+ a + a1 [a,a+]1 • Order is important normalform • a a+ a + a+ 1 • a a+ a + a normalordering • Normal order • a a+ aaa+ a • a + 2a4+4a + a3+ 2 a2 unique [a,a+]1 • a +- to the left a - to the right ICSSUR 2007, Bradford

  5. Operator representations • A - bounded operator • Matrixrepresentation • Coherent state representation (Bargmann – Segal repr.) • Normallyordered form ICSSUR 2007, Bradford

  6. Graph representations • A- algebra of operators • G - algebra of graphs 1:1 •   • a+ k a l • - basis inA • - basis in G •   k l 1:1 k l • What about the product inA ? • Can be transfered on graphs and is consistent • with the natural graph composition !!! ICSSUR 2007, Bradford

  7. Graphs: Basic concepts I • G – graph : vertices & lines + some rules • Basic buildingblocks: • output • The vertex has two kinds of lines k outgoing lines l ingoing lines • All lines are distinguishable • between each other • input • Picture of a process ICSSUR 2007, Bradford

  8. Graphs: Basic concepts II • Composition rules: • CORRECT • Vertices may be connected by joining • outgoing and ingoing lines, • i.e. lines keep their direction • WRONG • , • & • & • & • 4 • 2 • 2 • 1 ICSSUR 2007, Bradford

  9. Graphs: Basic concepts II • Labeling: • Vertices are numbered with consecutive integers 1,2,3, … • and followdirection of the lines 8 3 5 3 1 2 7 2 1 2 3 4 1 6 1 2 3 • WRONG • CORRECT • WRONG ICSSUR 2007, Bradford

  10. Graphs: Basic concepts II • Labeling: • Vertices are numbered with consecutive integers 1,2,3, … • and followdirection of the lines 8 5 2 7 3 4 1 6 • Processes grow step by step ICSSUR 2007, Bradford

  11. Graphs: Basic concepts III • Weights: • Vertices may be attached weights • making up the overall weight of the graph • &       • , • ,     • *  2   2  2  • *  5 3 ICSSUR 2007, Bradford

  12. Graphs: Equivalence relation G1 G2 No. of and in G1andG2 in are equal, resp.     / , , … , , …    4lines 5lines 3lines 2lines ICSSUR 2007, Bradford

  13. Graphs: Example • , • No connection (disconnected) 1 2 1 2 1 2 1 2 2 2 2 2 • , • One connection 2 2 4 x x x 1 1 1 1 • All two vertex graphs made of : • Twoconnections 2 2 2 2 x x • & 1 1 ICSSUR 2007, Bradford

  14. Graphs: Example • All two vertex graphs made of : • & ICSSUR 2007, Bradford

  15. Graph algebra • Graph algebra: • Addition: k l • Multiplication: • Quotient graph algebra: ICSSUR 2007, Bradford

  16. Graph algebra: Examples • 1  • 2  • 1 2  2 1  , • 2 • 2 • = • + • 4 • + • 2 • * • 2 • 1 • 1 • 1 • 2 • = • + • * • 2 • 2 • 1 • 1 • Noncommutative !! ICSSUR 2007, Bradford

  17. Operators vs Graphs I • Graph • Operator k outputs a+ a+ a+ a+ • a+ ka l 1:1 a a a l inputs • Basic quantum process and its picture. ICSSUR 2007, Bradford

  18. Operators vs Graphs II • A- algebra of operators • G - algebra of graphs 1:1 • - basis inG •   • a+ k a l • - basis inA •   k l 1:1 k l • G •  •  1:1 • A • G ICSSUR 2007, Bradford

  19. ‘Proof’ • Commutator: : rki 2 i connections • = • * r k l s 1 : sli ICSSUR 2007, Bradford

  20. Example I: Product • & • Product in A : • Product in G : • 2 • 2 • = • + • 4 • + • 2 • * • 2 • 1 • 1 • 1 ICSSUR 2007, Bradford

  21. Example II: Powers  2 • =a + 4a4+ 2 a + 4a3+ a + 4a2+ 4 a + 3a3+ • + 6 a + 3a2+ 2 a + 3a+ 2 a + 2a2+ 2 a + 2a • a + 2a2+a + 2 a • + • + • + • + • =  2 2 1 1 2 2 1 1 2 2 • + • + 2 • + • + 2 2 2 4 2 2 2 4 4 6 1 1 1 1 • + • + 2 2 2 2 2 2 1 1 ICSSUR 2007, Bradford

  22. Conclusion and outlook • G • Summary: •  •  1:1 • A • G • a+ k a l k l • Conclusion: Operatorscan be seenas graphs • Outlook: • Seeoperators as processes • Quantum Mechanicsingraphrepresentation • AlternativeLanguage & Interpretation ICSSUR 2007, Bradford

  23. Example III: Powers  2 • =a + 4a4+ 2 a + 4a3+ a + 4a2+ 4 a + 3a3+ • + 6 a + 3a2+ 2 a + 3a+ 2 a + 2a2+ 2 a + 2a • a + 2a2+a + 2 a • + • + • = • +  2 • + 1 1 2 2 1 1 2 2 • + • + • + 2 • + 2 2 2 2 2 4 1 1 1 1 • + • + 2 2 2 2 1 1 ICSSUR 2007, Bradford

  24. Graphs: Basic concepts I k l • Compositionrules: Vertex & Lines • Verticesmay be connected by joining • lines keepingtheirdirection • CORRECT • & • WRONG ICSSUR 2007, Bradford

  25. Graphs: Basic concepts II • Compositionrules: • CORRECT • Verticesmay be connected by joining • outgoing and ingoing lines, • i.e. lines keeptheirdirection • WRONG • & ICSSUR 2007, Bradford

  26. Graphs: Basic concepts II • Labeling: • Verticesarenumberedwithconsecutive • integers 1,2,3, … inaccordancewiththe • direction of lines 3 3 1 2 1 2 1 2 3 • WRONG • CORRECT • WRONG ICSSUR 2007, Bradford

  27. Graphs: Basic concepts II • & • Compositionrules: • Verticesmay be connected by joining • outgoing and ingoing lines, • i.e. lines keeptheirdirection • 4 • 1 • WRONG • CORRECT • 2 • 2 ICSSUR 2007, Bradford

  28. Graphs: Equivalence relation G1 G2 No. of and in G1and G2 in are equal, resp.     / , , 8 5 2 7  10 lines 7 lines 3 4 1 6 ICSSUR 2007, Bradford

  29. Graphs: Basic concepts II • Labeling: • Vertices are numbered with consecutive • integers 1,2,3, … in accordance with the • direction of lines 8 5 2 7 3 4 1 6 • Processes grow step by step ICSSUR 2007, Bradford

  30. Example I: Product • & • Product in A : • Product in G : • + • + • 2 • = • 4 • * ICSSUR 2007, Bradford

  31. Example II: String • & • Product in A : • Product in G : • 2 • 2 • = • + • 4 • + • 2 • * • 2 • 1 • 1 • 1 ICSSUR 2007, Bradford

More Related