1 / 49

ENERGY

ENERGY. Energy cannot be created or destroyed , it can only change its form of existence. Energy types. Chemical energy – stored in chemical bonds and can be released upon chemical reaction Heat energy – transferred between bodies by thermal interactions

neena
Download Presentation

ENERGY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ENERGY Energycannotbecreatedordestroyed, itcanonlychangeitsformofexistence

  2. Energytypes • Chemicalenergy – storedinchemicalbonds and canbereleaseduponchemicalreaction • Heatenergy – transferredbetweenbodiesbythermalinteractions • Mass energy – equivalenceof mass and energydescribedas E = m c2 • Kineticenergy – energythatobjectposessesduetoitsmotion E = ½ m v2 • Potentialenergy – energythatobjectposessesduetoitsposition E = m g H • Electricenergy – E = q V • Magneticenergy • Nuclearenergy • Etc.

  3. Energyquality and exergy • Lawsofthermodynamics: 1. The heat, Q, added to a system equals the change in the internal energy, U, of the system plus the work, W, done by the system Q = U + W 2. It is impossible to remove thermal energy from a system at a single temperature and convert it to mechanical work without changing the system surroundings in some other way • Exergy - the useful work that can be extracted from a system which executes a loss-free process between its initial state and a dead state • Dead state – stateofequilibriumwiththesurroundings

  4. Energyconsumption

  5. Stateofthe art Image: http://ourfiniteworld.com/2012/03/12/world-energy-consumption-since-1820-in-charts/ Image: http://alfin2300.blogspot.com/2011/04/can-small-modular-nuclear-reactors-save.html

  6. Possiblefuturetrends Image: http://archive.transitiontowntotnes.org/content/future-scenarios-0

  7. Currentenergyconsumptionbyvarioussources Datasource: BritishPetroleum, 2013

  8. Scenariosforfutureenergysources Image: http://s01.static-shell.com/content/dam/shell-new/local/corporate/Scenarios/Downloads/Scenarios_newdoc.pdf Image: http://www.kuuvikriver.info/the-arctic-and-you.html

  9. Fossilfuelsasenergysource

  10. Oil • Estimatedtotaloil reserves: • 190 km3 (1.2 trilionbarrels) withoutoilsands • 595 km3 (3.74 trillion barrels) with oil sands • 1 oil barrel (bbl) = 42 US gallons = 158.987 L Image: http://ourfiniteworld.com/ Image: Wikipedia Image: Wikipedia

  11. Natural gas • Major proven resources (2013): world – 187.3 trillion m3 • Iran (33.6 trillion m3) • Russia (32.9 trillion m3) • Qatar (25.1 trillion m3) • Turkmenistan (17.5 trillion m3) • Saudi Arabia (8.2 trillion m3) • United Arab emirate (6.1 trillion m3) • Unconventionalgas, incl. shalegas: • 900 trillionsm3 • ca. 164 trillions m3are readily recoverable Image: Wikipedia

  12. Coal • Total reserve estimate: 948 billionsoftonnes • Coalcanundergocracking and gasificationtoproduceliquid and gaseousfuels (feasibility?) Image: Google Image: http://www.eia.gov/todayinenergy/detail.cfm?id=3350

  13. Oilshale • Worldwide: 7718 billionsoftonnes • GreenRiverformation (US): 52 % ofworldoilshale • Contains ca. 35 % organics (kerogen) • Escessivelystudied and dealtwithinEstonia • KnownEstonian reserves of2.23 billionsoftonnes • Estonian mining: • 12 to 13 millionsoftonnesp.a. • 9 totentonnesp.a. burned, rest – treatedtoproduceshaleoil and phenols Image: adoptedfromEnefit Image: Allix P. et al., Oilfield Review 22 (2010) 6

  14. Heatengines: fueltowork

  15. Heatenginedefinition • System thatperformsconversionofheatorthermalenergytomechanicalwork • MaximalefficiencylimitedbyCarnottheorem: • 3 % forproposedoceanthermalenergyconversion (OTEC) powerplants • 18-20 % forpetrolengines • 45 % forsupercriticalcoal-firedpowerplant • Over 80 % forheat and powerco-generationplants Image: Wikipedia

  16. Steamengine • Firstcuriosities – 1st century AD (HeroofAlexandria) • Rudimentaryengines – Taqial-Din (1551), Jerónimo de Ayanz y Beaumont (1606), Giovanni Branca (1629), Denis Papin (1679, 1690) • Commercialsteam-poweredwater pumps – Thomas Savery (1698), Thomas Newcomen (1712), Jacob Leupold (1720) • 1763-75 – James Watt • 1849 – George Henry Corliss • 1884 – sir Charles Parsons, steamturbine Image: http://science.howstuffworks.com/transport/engines-equipment/steam2.htm Image: Wikipedia Image: Wikipedia

  17. Petrolengine • Petrol (UK), gasoline (US) • Variousdevelopmentsfrom 5th centuryonwards • 1876 – Nicholaus Otto, four-strokeengine • 1929 – Felix Wankel • Pterolenginecouldintheoryusehydrogenforfuel Image: Wikipedia

  18. Dieselengine • 1892, Rudolf Diesel • Upto 45 % efficiency, moreeconomic • Fuelcheapertoobtain, no flammablevapours • Turbo-pressurisinglimitedonlybymotorcomponentsmechanicalstrenght • Less CO and NOxinexhaust , • Biodieseleasytosynthesize • Greatermechanicalstrength, moremassive and heaviermotors • Summer and winterdieselfuel

  19. Fossilfuel-operatingpowerplants

  20. Overview • Fossilfuelscombustion • Vapourproduction • Steamorgasturbinerotationgenerateselectricity • Excessheatremovedbycoolingtowers • Combinedcycleplants: gasturbine and steamturbine • 33-60 % efficiency, upto 70 % forcombinedcycle • Greenhousegasemissions Images: Wikipedia

  21. Example: modern coal-firedpowerplant 1 - cooling tower, 2 - cooling water pump, 3 - transmission line (3-phase), 4 - unit transformer (3-phase), 5 - electric generator (3-phase), 6 - low pressure turbine, 7 - condensate extraction pump, 8 – condenser, 9 - intermediate pressure turbine, 10 - steam governor valve, 11 - high pressure turbine, 12 – deaerator, 13 - feed heater, 14 - coal conveyor, 15 - coal hopper, 16 - pulverised fuel mill, 17 - boiler drum, 18 - ash hopper, 19 – superheater, 20 - forced draught fan, 21 – reheater, 22 - air intake, 23 – economiser, 24 - air preheater, 25 – precipitator, 26 - induced draught fan, 27 - chimney stack Image: Wikipedia

  22. Nuclearenergy

  23. Basics and overview • 1951 – ExperimentalBreederReactor 1, USA • 1954 – Obninsk, USSR: nuclearreactorgenerateselectricityforpowergrid • Smallfuelamounts, radioactiveelementsoftenfoundinmetallurgyslags, phosphogypsum, etc. • Smallwasteamount • Operating and wastehazards Image: http://visual.merriam-webster.com/science/chemistry/matter/nuclear-fission.php Image: Wikipedia Shutter UO2tablets Zr Spring

  24. Boilingwaterreactor • Startup neutron source: mixtureof241Am and 9Be • Controlrods: boricacidadsorbsneutrons(neutron poison) • 135I and 135Xe buildup: neutron poisonthat „burnsoff“ Image: Wikipedia

  25. Pressurisedwaterreactor Image: Wikipedia

  26. Breeder reactor Image: Wikipedia

  27. Renewableenergysources

  28. Renewableenergyusebysource Totalenergyconsumption – 8.6 % (Friday, 2013) Electricitygeneration – 25.6 % (BritishPetroleum, 2013)

  29. Biomass and biofuel • Biomass: whengrowth and harvesting are inbalance, plants are sort of „naturalbatteries“ storingSun’senergy • Otherprocesses’ residuescanbeused • Biofuels • Fermentationgivesbiogasorethanol • Biodiesel: usedvegetableoils, fats, recycledgreases • Biodieselisproducedbytranseterification: • Combustionin engines and powerplants

  30. Hydroelectricity (1) • USA – 7 %, Norway – 99 %, Brazil – 93 %, Canada – 58 %, Sweden – 50 % oftotalpowerproduction • Potentialenergyoffallingwateristransformedtoelectricalenergybyturbine • Pumped-storage: duringlowelectricitydemand (nighttime), mostwaterispumpedbackintoreservoir • Ecosystemdamage and loss oflandduetoreservoirs Images: http://ga.water.usgs.gov/edu/hyhowworks.html

  31. Hydroelectricity (2) • Run-of-the-river • Tidalenergy Image: Wikipedia Image: http://www.alternative-energy-news.info/technology/hydro/tidal-power/

  32. Windpower • Works on kineticenergyofwind • 1st century AD – HeroofAlexandria, windwheel • From 9th century – windmills • 1887 – James Blyth made firstwindturbineforelectricutyproduction • Over 2.5 % worldwidetotalpowersupply, 25 % inDenmark • Backingsupplyorpowerstorageneededduetotheintermittencyofwind • Increasedbird and batfatalitiesduetocollisionwith propeller blades – radars and microwavedetectorsappliedinsomeplacestopreventthat • Noiseissues, officiallyunsupported Images: Google

  33. Solarpower • Black dots on map – areaswhichuponbeingcoveredwithsolarcellscan serve asenergysupplyforthewholeworld • Photovoltaics (PV): Si, thin film • Concentratedsolarpower (CSP) Images: Wikipedia Graph: http://techon.nikkeibp.co.jp/article/HONSHI/20100326/181377/

  34. Photovoltaics: basics • n-typesemiconductor – excessofelectrons • p-typesemiconductor – excessofholes (lackofelectrons) • p-njunction: chargecarriersdiffuseintoborderingregionofoppositesemiconductor • Uponphotoexcitation, electronflowstartsfrompton side: electricalcurrent • Canpowerstandaloneinstruments, orbeconnectedtoelectricalgrid Image: http://www.solarcell.net.in/ Image: Wikipedia

  35. Photovoltaicpowerstation • Solarcellslinkedintogreatermodules • Solartrackerscanbeusedtomaximizeoutput • Producesdirectcurrent (DC), inverterstogetalternatingcurrent (AC) • Energystorageisneededforpowerdelivery at night Image: http://www.solarserver.com/solarmagazin/solar-report_0509_e_3.html Images: Wikipedia

  36. Solarthermalenergy • Solarenergyisusedfor heating upreceivingliquid • Temperaturescanreachfrom 45 C (waterheaters) to 3500 C (solarfurnace) • Heatstorageallowscontinuousenergyproduction • steam • moltensalt • graphite Images: Wikipedia

  37. Geothermalenergy • Oldestuses – hotsprings • Direct heating hotwatertemperature 150 C orless (incl. geothermalheat pumps) • Indirect: steamforturbines • AlthoughEarth’sheatcanbeconsideredrenewable, localdepletionispossible • Emissionofgreenhousegasesdrawnfromtherocks (CO2, NH3, H2S, etc.) isconsiderablysmallerthanincaseoffossilfuels Image: http://www.way2science.com/geothermal-power-plant/

  38. Oceanthermalenergyconversion (OTEC) • Usestemperature gradient betweensurface and deeperwaterlayers • Closecircuit: circulatingworkfluid (lowboilingtemperature) • Opencircuit: producesdesalinatedwateraswell • Carbondioxideemissionsduetotemperature and pressurechanges • Bringingnutrientsfromthedeepintoshallow part Image: http://nextbigfuture.com/2010/11/ocean-thermal-energy-conversion-otec.html Image: Wikipedia

  39. Fuelcells

  40. Basics • Fuelcell – electrochemicaldevicethatconvertschemicalenergyoffueldirectlyintoelectricalenergy („coldcombustion“) • 1838 – C. F. Schönbein, 1839 – W. Grove • Fuels: hydrogen, alcohols, ammonia, methane, petrol, etc. Image: Wikipedia 2 H2 – 4 e- 4 H+ O2 + 4 H+ + 4 e- 2 H2O

  41. Types and applications

  42. Heat pumps

  43. Workingprinciple • Firstartificial refrigeraator -1756, W. Cullen • Firstscientificallydescribedby W. Thomson, Lord Kelvin, asheatamplifier, 1852 • Basics: • Heatisneededforevaporation • Heatisreleaseduponcondensation • Boilingtemperaturedepends on pressure • Usedtooperate on freons, now – ammonia, butane, propane, carbondioxide • Refrigerators, conditioners, heating systems • Itispossibletobetupto ca. 2.5-5 kW h of heatenergywhenapplying 1 kW h ofelectricenergy Image: Wikipedia Image: http://progressivetimes.files.wordpress.com/2012/02/geothermal_heat_pump.jpg

  44. Energyconservation and passivebuildings

  45. Main principles • Minimizetheamountofescapingheat – superinsulation: inSweden, min 335 mm forwalls (0.1 W m-2 K-1) and 500 mm forroof (0.066 W m-2 K-1) • Decreasedprimaryenergyconsumption • Passivesolardesign: reducedsurfacearea, windowsorientedtowardsthesun • Airtightness: aircirculationprovidedbymechanicalventilationwithheatrecovery • Heatpumps (heatfromsurroundings and recuperatingheatfromexhaustair) • Heatrecuperationfrom major appliances • Excessiveuseofdaylighting • Solarpanels, wherepossible Images: Wikipedia

  46. Pinchtechnology: basics

  47. Simplecase: twostreams, heatresuperation • A – heatsuppliedbysteam • B – heattakenbycoolingwater • Consider 20 C minimalplausibletemperaturedifferenceforheatexchanger • X – amountofheatrecuperated Image: http://www.me.mtu.edu/~jwsuther/erdm/pinchtech.pdf

  48. Compositecurves: twohotstreams • Streamwithconstantheatcapacity (CP) – straightline Image: http://www.me.mtu.edu/~jwsuther/erdm/pinchtech.pdf

  49. Combinedcompositecurves • Whenminimaltemperaturedifferenceisset, compositecurvescanbeshifted • Wegetamountofrecuperativeheat, and minimalamountsofcooling and heating agents • Belowpinchpoint: heatsource • Abovepinchpoint: heat sink Image: http://www.me.mtu.edu/~jwsuther/erdm/pinchtech.pdf

More Related