Background review
Download
1 / 44

Background Review - PowerPoint PPT Presentation


  • 93 Views
  • Uploaded on

Background Review. Elementary functions Complex numbers Common test input signals Differential equations Laplace transform Examples properties Inverse transform Partial fraction expantion Matlab. Elementary functions. The most beautiful equation.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Background Review' - nat


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Background review
Background Review

  • Elementary functions

  • Complex numbers

  • Common test input signals

  • Differential equations

  • Laplace transform

    • Examples

    • properties

    • Inverse transform

    • Partial fraction expantion

  • Matlab



The most beautiful equation
The most beautiful equation

  • It contains the 5 most important numbers: 0, 1, i, p, e.

  • It contains the 3 most important operations: +, *, and exponential.

  • It contains equal sign for equations






Elementary functions5
Elementary functions

  • F(t)=3sin 3t +4cos 3t

  • F(t)=Asin(3t-d)=Acosd sin3t –Asin d cos3t

  • Acos d =3

  • Asin d =-4

  • A2=25, A=5

  • tan d =-4/3, d=-53.13o

  • F(t)=5sin(3t+53.13o)


Complex numbers
Complex Numbers

  • X2+1=0  x=i where i2=-1

  • X2+4=0, then x=2i, or 2j

  • If z1=x1+iy1, z2=x2+iy2

  • Then z1+ z2= (x1+ x2)+i(y1 +y2)

  • z1 z2=(x1+iy1)(x2+iy2)=(x1x2 -y1y2) +i(x1y2 +x2y1)


Polar form of complex numbers
Polar form of Complex Numbers

  • z=x+iy, let’s put x=rcosq, y= rsinq

  • Then z = r(cosq+i sinq) = r cisq = rq

  • Absolute value (modulus) r2=x2+y2

  • Argument q= tan-1(y/x)

  • Example z=1+i


Euler formula
Euler Formula

  • z=x+iy

  • ez =ex+iy= ex eiy= ex (cos y+i sin y)

  • eix =cos x+i sin x = cis x

  • | eix | = sqrt(cos2 x+ sin2 x) = 1

  • z=r(cosq+i sinq)=r eiq

  • Find e1+i

  • Find e-3i


In matlab
In Matlab

>> z1=1+2*i

z1 = 1.0000 + 2.0000i

>> z2=3+i*5

z2 = 3.0000 + 5.0000i

>> z3=z1+z2

z3 = 4.0000 + 7.0000i

>> z4=z1*z2

z4 = -7.0000 +11.0000i

>> z5=z1/z2

z5 = 0.3824 + 0.0294i

>> r1=abs(z1)

r1 = 2.2361

>> theta1=angle(z1)

theta1 = 1.1071

>> theta1=angle(z1)*180/pi

theta1 = 63.4349

>> real(z1)

ans = 1

>> imag(z1)

ans = 2


Poles and zeros
Poles and zeros

  • Pole of G(s) is a value of s near which the value of G goes to infinity

  • Zero of G(s) is a value of s near which the value of G goes to zero.


Poles and zeros in matlab
Poles and zeros in Matlab

>> s=tf(‘s’)

Transfer function: s

>> G=exp(-2*s)/s/(s+1)

Transfer function:

1

exp(-2*s) * -----------

s^2 + s

>> pole(G)

ans = 0, -1

>> zero(G)

ans = Empty matrix: 0-by-1



1 st order differential equations
1st order differential equations

  • y’ + a y = 0; y(0)=C, and zero input

  • Solution: y(t) = Ce-at

  • y’ + a y = d(t); y(0)=0, input = unit impulse

  • Unit impulse response: h(t) = e-at

  • y’ + a y = f(t); y(0)=C, non zeroinput

  • Total response: y(t) = zero input response + zero state response = Ce-at + h(t) * f(t)

  • Higher order LODE: use Laplace


Laplace transform
Laplace Transform

  • Definition and examples

Unit Step Function u(t)



Name:____________

The single most important thing to remember is that whenever there is feedback, one should worry about __________







Laplace transform theorems
Laplace transform theorems





Laplace transform9
Laplace Transform

  • y”+9y=0, y(0)=0, y’(0)=2

  • L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2

  • L(y)=Y(s)

  • (s2+9)Y(s)=2

  • Y(s)=2/ (s2+9)

  • y(t)=(2/3) sin 3t


Matlab
Matlab

F=2/(s^2+9)

F =

2/(s^2+9)

>> f=ilaplace(F)

f =

2/9*9^(1/2)*sin(9^(1/2)*t)

>> simplify(f)

ans =

2/3*sin(3*t)


Laplace transform10
Laplace Transform

  • y”+2y’+5y=0, y(0)=2, y’(0)=-4

  • L(y”)=s2Y(s)-sy(0)-y’(0)= s2Y(s)-2s+4

  • L(y’)=sY(s)-y(0)=sY(s)-2

  • L(y)=Y(s)

  • (s2+2s+5)Y(s)=2s

  • Y(s)=2s/ (s2+2s+5)=2(s+1)/[(s+1)2+22]-2/[(s+1)2+22]

  • y(t)= e-t(2cos 2t –sin 2t)


Matlab1
Matlab

>> F=2*s/(s^2+2*s+5)

F =

2*s/(s^2+2*s+5)

>> f=ilaplace(F)

f =

2*exp(-t)*cos(2*t)-exp(-t)*sin(2*t)


Laplace transform11
Laplace transform

  • Y”-2 y’-3 y=0, y(0)= 1, y’(0)= 7

  • Y”+2 y’-8 y=0, y(0)= 1, y’(0)= 8

  • Y”+2 y’-3 y=0, y(0)= 0, y’(0)= 4

  • 4Y”+4 y’-3 y=0, y(0)= 8, y’(0)= 0

  • Y”+2 y’+ y=0, y(0)= 1, y’(0)= -2

  • Y”+4 y=0, y(0)= 1, y’(0)= 1


Y”+2 y’+ y=0, y(0)= 1, y’(0)= -2

>> A=[0 1;-1 -2]; B=[0;1]; C=[1 0]; D=0;

>> x0=[1;-2];

>> t=sym('t');

>> y=C*expm(A*t)*x0

y = exp(-t)-t*exp(-t)

Y”+2 y’+ y=f(t)=u(t), y(0)= 2, y’(0)= 3







Matlab

>> [r p k]=residue(n,d)

r =

1

2

p =

1

0

k =

[]

>> d=[1 -1 0]

d =

1 -1 0

>> n=[3 -2]

n =

3 -2

1/(s-1) + 2/s


Matlab

>> [r p k]=residue(n,d)

r =

1.5000

-1.5000

1.0000

p =

3

-3

0

k =

[]

>> n=[1 9 -9]

n =

1 9 -9

>> d=[1 0 -9 0]

d =

1 0 -9 0

1.5/(s-3)-1.5/(s+3)+1/s


Matlab

>> [r p k]=residue(n,d)

r =

2.0000

-3.0000

1.0000

p =

2.0000

-2.0000

1.0000

k =

[]

>> n=[11 -14]

n =

11 -14

>> d=[1 -1 -4 4]

d =

1 -1 -4 4

2/(s-2)-3/(s+2)+1/(s-1)


Matlab

>> [r p k]=residue(a,b)

r =

1

-1

p =

-1

-1

k =

[]

>> b=[1 2 1]

b =

1 2 1

>> a=[1 0]

a =

1 0

1/(s+1)-1/(s+1)2


>> Y=(s^4-7*s^3+13*s^2+4*s-12)/s^2/(s-3)/(s^2-3*s+2)

Transfer function:

s^4 - 7 s^3 + 13 s^2 + 4 s - 12

------------------------------------

s^5 - 6 s^4 + 11 s^3 - 6 s^2

>> [n,d]=tfdata(Y,'v')

n = 0 1 -7 13 4 -12

d = 1 -6 11 -6 0 0

>> [r,p,k]=residue(n,d)

r = 0.5000

-2.0000

-0.5000

3.0000

2.0000

p = 3.0000

2.0000

1.0000

0

0

k = [ ]


ad