1 / 73

Complexometric titration 第六章 络合滴定法

6.1 了解常用络合物的性质 6.2 了解络合平衡常数的概念 6.3 掌握副反应系数及条件稳定常数的概念 6.4 了解金属离子指示剂的特性 6.5 了解络合滴定法的基本原理 6.6 掌握络合滴定中酸度控制的控制方法 6.7 了解提高络合滴定选择性的途径 6.8 掌握络合滴定方式及其应用. Complexometric titration 第六章 络合滴定法. 教学要求. 方法简介. 以 络合反应 和 络合平衡 为基础的滴定分析方法. 作为络合滴定应的条件: 生成的络合物组成一定; 络合物稳定; 反应快速;

nan
Download Presentation

Complexometric titration 第六章 络合滴定法

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6.1 了解常用络合物的性质 6.2 了解络合平衡常数的概念 6.3 掌握副反应系数及条件稳定常数的概念 6.4 了解金属离子指示剂的特性 6.5 了解络合滴定法的基本原理 6.6 掌握络合滴定中酸度控制的控制方法 6.7 了解提高络合滴定选择性的途径 6.8 掌握络合滴定方式及其应用 Complexometric titration 第六章 络合滴定法 教学要求 Analytical chemistry

  2. 方法简介 以络合反应和络合平衡为基础的滴定分析方法 • 作为络合滴定应的条件: • 生成的络合物组成一定; • 络合物稳定; • 反应快速; • 终点易观察(有适当的指示剂)。 Analytical chemistry

  3. 6.1 常用络合物 简单络合剂: NH3, Cl-, F- Cu2+-NH3 络合物 螯合剂:乙二胺,EDTA等 乙二胺 - Cu2+ Analytical chemistry

  4. EDTA及其特性 • EDTA:乙二胺四乙酸(Ethylene-diamine tetraacetic acid),用H4Y表示。 • EDTA性质:微溶于水,难溶于酸和一般有机溶剂,但易溶于氨性溶液或苛性碱溶液中,生成相应的盐溶液。常用乙二胺四乙酸二钠盐,Na2H2Y·2H2O,习惯上也称EDTA。 • Na2H2Y·2H2O性质:一种白色结晶状粉末,无臭、无味、无毒、稳定、易精制,水溶液近中性。 Analytical chemistry

  5. : ·· ·· : : EDTA的结构 乙二胺四乙酸 (H4Y) 乙二胺四乙酸二钠盐(Na2H2Y) Analytical chemistry

  6. EDTA的解离平衡(P.169) [H+][H5Y] H6Y2+ =H+ + H5Y+ H5Y+ =H+ + H4Y H4Y =H+ + H3Y- H3Y-=H+ + H2Y2- H2Y2-=H+ + HY3- HY3- =H+ + Y4- Ka1= = 10-0.90 [H6Y] [H+][H4Y] Ka2= = 10-1.60 [H5Y] [H+][H3Y] Ka3= = 10-2.00 [H4Y] [H+][H2Y] Ka4= = 10-2.67 [H3Y] [H+][HY] Ka5= = 10-6.16 [H2Y] [H+][Y] Ka6= = 10-10.26 [HY] 思考:什么时候以Y4-形式存在?(P.170图6-1) Analytical chemistry

  7. EDTA与金属离子配合的特点 • 几乎能与大部分金属离子络合; • 形成具有稳定性较强的络合物,具有五元员环结构的螯合物,且部分具有鲜明的颜色; • 络合比一定,大多数为1∶1; • EDTA与金属离子生成的络合物易溶于水,滴定反应可在水中进行; • EDTA与金属离子的络合能力与溶液酸度密切相关。 Analytical chemistry

  8. M-EDTA螯合物的立体构型(P.171图6-3) EDTA 通常与金属离子形成1:1的螯合物 多个五元环 Analytical chemistry

  9. lgK lgK lgK lgK Na+ 1.66 Mg2+ 8.79 Ca2+ 10.69 Fe2+ 14.32 Al3+ 16.30 Zn2+ 16.50 Cd2+ 16.46 Pb2+ 18.04 Cu2+ 18.80 Hg2+21.70 Th4+ 23.20 Fe3+ 25.10 Bi3+ 27.80 某些金属离子与EDTA的形成常数(P.172表6-2) Analytical chemistry

  10. 6.2 络合平衡常数(P.172) [MY] [M][Y] K稳=KMY= 1 络合物的稳定常数 (K稳, n) M + Y = MY Analytical chemistry

  11. 1=K1= K2= K1= 2=K1K2= [MLn] Kn= [MLn-1][L] n=K1K2 ···Kn= [MLn] [ML2] [ML] [ML2] [ML] [M][L]2 [M][L] [M][L]n [M][L] [ML][L] 逐级稳定常数Ki 累积稳定常数n M + L = ML ML + L = ML2 ● ● ● ● ● ● ● ● ● MLn-1 + L = MLn K 表示相邻络合物之间的关系 表示络合物与配体之间的关系 Analytical chemistry

  12. 2 溶液中各级络合物的分布(P.173) M + L = ML [ML] = 1 [M] [L] [ML2]= 2 [M] [L]2 ML + L = ML2 ● ● ● ● ● ● MLn-1 + L = MLn [MLn ]= n [M] [L]n cM=[M]+[ML]+[ML2]+…+[MLn] =[M](1+  1 [L]+  2 [L]2+…+  n [L]n) Analytical chemistry

  13. 分布分数(P.174) δM=[M]/cM = 1/(1+1[L]+2[L]2+…+n[L]n) δML=[ML]/cM = 1[L]/(1+1[L]+2[L]2+…+n[L]n) = δM1[L] ● ● ● δMLn=[MLn]/cM = n[L]n/(1+1[L]+2[L]2+…+n[L]n) = δMn[L]n 分布分数仅仅是[L]的函数,与cM无关。 Analytical chemistry

  14. 酸可看成质子络合物--质子化常数(P.169)与累积质子化常数(P.177)酸可看成质子络合物--质子化常数(P.169)与累积质子化常数(P.177) Y4- + H+ =HY3- HY3- + H+ =H2Y2- H2Y2- +H+ = H3Y- H3Y- + H+ =H4Y H4Y + H+ = H5Y+ H5Y+ +H + =H6Y2+ 1 K1= = 1010.26  1=K1= 1010.26 Ka6 1 K2= = 106.16  2=K1K2= 1016.42 Ka5 1 K3= = 102.67  3=K1K2K3= 1019.09 Ka4 1 K4= = 102.00 4=K1K2K3K4= 1021.09 Ka3 1 K5= = 101.60  5=K1K2..K5= 1022.69 Ka2 1 K6= = 10 0.90 6=K1K2..K6= 1023.59 Ka1 Analytical chemistry

  15. 6.3副反应系数和条件稳定常数(P.176) M + Y = MY 主反应 OH- L H+ N H+ OH- HY NY MOH ML MHY MOHY 副反应 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● M(OH)n MLn H6Y MY M Y Analytical chemistry

  16. [MY] [M] [Y] aMY= aM= aY= [MY] [M] [Y] 1 副反应系数 副反应系数:为未参加主反应组分的浓度[X] 与平衡浓度[X]的比值,用表示。 Analytical chemistry

  17. M + Y = MY 主反应 OH- L H+ N H+ OH- HY NY MOH ML MHY MOHY 副反应 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● M(OH)n MLn H6Y [MY] [M] [Y] Analytical chemistry

  18. [Y] aY= [Y] a 络合剂的副反应系数 M + Y = MY H+ N Y: HY NY ● ● ● Y(H): 酸效应系数 H6Y Y Y(N): 共存离子效应系数 Analytical chemistry

  19. 1 [Y]+[Y][H+]1+[Y][H+]22+…+[Y][H+]66 Y [Y] [Y] [Y]= aY(H) 酸效应系数 Y(H): [Y]+[HY]+[H2Y]+…+[H6Y] [Y] aY(H)= == [Y] [Y] = =(1+1[H+]+2[H+]2+…+6[H+]6) aY(H) ≥1 aY(H)值可由Ka值计算(见P.178例3例4),或直接查P.394表10。 Analytical chemistry

  20. lgY(H)~pH图 EDTA的酸效应系数曲线(p179) lgY(H) Analytical chemistry

  21. 共存离子效应系数 Y(N)(P.178) [Y]+[NY] [Y] aY(N)= = = 1+ KNY[N] [Y] [Y] 多种共存离子 [Y]+[N1Y]+[N2Y]+…+[NnY] [Y] aY(N)= = = 1+KN1Y[N1]+KN2Y[N2]+…+KNnY[Nn] =1+aY(N1) +aY(N2) +…+aY(Nn) -n =aY(N1)+aY(N2)+…+aY(Nn)-(n-1) [Y] [Y] Analytical chemistry

  22. [Y]+[HY]+[H2Y]+ ···+[NY] [Y] Y== [Y] [Y] = Y(H) + Y(N) -1 Y的总副反应系数 Y Analytical chemistry

  23. M + Y = MY OH- L MOH ML ● ● ● ● ● ● M(OH)n MLn M b 金属离子的副反应系数 M M(L) =1+1[L] +2[L]2+…+n[L]n (6-11) M(OH) =1 +1[OH-]+ 2[OH-]2+ …+ n[OH-]n Analytical chemistry

  24. 多种络合剂共存 M(L) =1+1[L] +2[L]2+…+n[L]n M = M(L1)+ M(L2) +…+M(Ln)-(n-1) Analytical chemistry

  25. lgM(OH)~pH Al Zn FeIII Pb Cd Cu FeII Bi Analytical chemistry

  26. M + Y = MY H+ OH- MHY MOHY MY c 络合物的副反应系数 MY(P.181) 酸性较强 MY(H)= 1+ KMHY×[H+] P.182 碱性较强 MY(OH)= 1+ KM(OH)Y×[OH-] Analytical chemistry

  27. 计算:pH=3.0、5.0时的lg ZnY(H),KZnHY=103.0 pH=3.0, αZnY(H)=1+10-3.0+3.0=2 , lgαZnY(H)= 0.3 pH=5.0,αZnY(H)=1+10-5.0+3.0=1, lgαZnY(H)= 0 Analytical chemistry

  28. [MY'] aMY KMY = =KMY aMaY [M'][Y'] 2 条件稳定常数 lgKMY = lgKMY - lgM - lgY + lg MY ≈lgKMY - lgM - lgY =lgKMY -lg(M(A1)+M(A2) +…+M(An)-(n-1)) - lg (Y(H) + Y(N) -1) Analytical chemistry

  29. lgK lgKZnY 16.5 15 lgaY(H) lgKZnY 10 lgKZnY lgaZn(OH) 5 0 0 2 4 6 8 10 12 14 pH lgK’ZnY~pH曲线 Analytical chemistry

  30. [Y] pM = lgKMY + lg [MY] [M] pL = lgKML + lg [ML] 3 金属离子缓冲溶液P.183 [MY] KMY = [M][Y] Analytical chemistry

  31. 6.4 金属指示剂(P.188) 1. 金属指示剂的作用原理 EDTA In+MMIn + M MY +In B色 A色B色 要求: A、B色不同(合适的pH); 反应快,可逆性好; 稳定性适当,K (MIn)<K(MY) Analytical chemistry

  32. 例 指示剂铬黑T(EBT)本身是两物质 H3In pKa1H2In-pKa2 HIn2-pKa3 In3- 紫红3.9紫 红6.3蓝11.6橙pH HIn2-蓝色----MIn-红色 EBT使用pH范围:7-10 Analytical chemistry

  33. 常用金属指示剂 Analytical chemistry

  34. 使用金属指示剂应注意 • 指示剂的封闭现象 若K(MIn)>K (MY),则封闭指示剂 Fe3+、Al3+、Cu2+、Co2+、Ni2+ 对EBT、 XO有封闭作用; 若K(MIn)太小, 终点提前 指示剂的僵化现象 (变化缓慢) PAN溶解度小, 需加乙醇或加热 指示剂的氧化变质现象 EBT、Ca指示剂与NaCl配成固体混合物使用 Analytical chemistry

  35. KMIn= lgKMIn = pM + lg [MIn] [M][In] [MIn] [In] 金属离子指示剂变色点pMep的计算 M + In = MIn 变色点:[MIn] = [In] 故 pMep = lgKMIn=lg KMIn -lgIn(H)-lgM P190(6-22) In(H)=1+[H+]/Ka2+[H+]2/Ka1Ka2(分布分数的倒数) ( In(H)亦可查p.397表14) Analytical chemistry

  36. 6.5 络合滴定法的基本原理P.185 1 络合滴定曲线:溶液pM随滴定分数(a)变化的曲线 2 终点误差 3 准确滴定判别式 4 分别滴定判别式(多种金属离子共存) Analytical chemistry

  37. 1 络合滴定曲线 M + Y = MY EDTA加入,金属离子被络合,[M] or [M’] 不断减小,化学计量点时发生突跃 Analytical chemistry

  38. [MY] KMY = [M][Y] 金属离子 M, cM, VM ,用cY浓度的Y滴定,体积为VY [M] + [MY] = VM/(VM+VY)cM MBE [Y] +[MY] = VY/(VM+VY) cY KMY[M]2 + {KMY(cYVY-cMVM)/(VM+VY)+1}[M] - VM/(VM+VY)cM = 0 ——滴定曲线方程 sp时:cYVY-cMVM=0 K’MYCMsp  105 pMsp = 1/2 ( lg KMY + pcMsp) p186(6-21b) Analytical chemistry

  39. -1± 1+4KMYcMsp [M]sp= 2KMY VM/(VM+VY)cM-[M] KMY = [M]{VY/(VM+VY)cY -VM/(VM+VY)cM-[M]} [MY] = VM/(VM+VY)cM-[M] = VY/(VM+VY)cY - [Y] [Y] = VY/(VM+VY)cY -VM/(VM+VY)cM-[M] KMY[M]2+{KMY(cYVY-cMVM)/(VM+VY)+1}[M]-VM/(VM+VY)cM=0 sp:CYVY-CMVM=0 KMY[M]sp2 +[M]sp -CMsp = 0 Analytical chemistry

  40. -1± 1+4KMYcMsp 4KMYcMsp cMsp/KMY [M]sp= = = 2KMY 2KMY 一般要求 logK’MY 7, cM =0.01 mol/L K’MYCMsp  105 pMsp = 1/2 ( lg KMY + pcMsp)p186(6-21b) Analytical chemistry

  41. [MY] [M]= KMY[Y] 滴定突跃 sp前,- 0.1%,按剩余M浓度计算 [M]=0.1% cMsp即:pM=3.0+pcMsp sp后,+ 0.1%,按过量Y浓度计算 [Y]=0.1% cMsp pM=lgKMY -3.0 [MY] ≈cMsp Analytical chemistry

  42. 影响滴定突跃的因素 滴定突跃pM:pcMsp+3.0 ~lgKMY-3.0 • 浓度:增大10倍,突跃增加1个pM单位(下限) • (p187图6-9) • KMY:增大10倍,突跃增加1个pM单位(上限) • (p186图6-8) Analytical chemistry

  43. 不同稳定性的络合体系的滴定(p186) 10 K´=1010 K´=108 8 pM´ 6 K´=105 4 2 0 100 200 滴定百分数 浓度一定时, K´MY增大10倍,突跃范围增大一个单位。 c =10-2mol ·L-1 Analytical chemistry

  44. EDTA滴定不同浓度的金属离子(p187) K´=1010 10 8 pM´ 6 10-4 mol/L 4 10-3 mol/L 10-2 mol/L 2 0 100 200 滴定百分数 K´MY一定, cM增大10倍,突跃范围增大一个单位。 Analytical chemistry

  45. 例:pH =10 的氨性buffer 中,[NH3]= 0.20 mol/L, 用0.020mol/L EDTA滴定0.020mol/L Cu2+,计算 sp 时pCu,若滴定的是0.020mol/L Mg2+, sp 时pMg又为多少? sp : Ccusp = 0.01 mol/L, [NH3] = 0.1 mol/L  Cu(NH3) = 1+1[NH3]+    + 5[NH3]5 =109.36  Cu(OH) = 101.7  Cu =  Cu(NH3) +  Cu(OH) -1 = 109.36 Analytical chemistry

  46. pH = 10, lg  Y(H) = 0.45 lgKCuY = lgKCuY - lgY(H) - lgCu = 18.80 - 0.45 -9.36 =8.99 pCu =1/2 (pCCusp + lgKCuY ) = 1/2 (2.00 + 8.99) =5.50 对于Mg2+, lg Mg =0 lgKMgY =lgKMgY -lgY(H)= 8.70 - 0.45 =8.25 pMg  =1/2(pCMgsp + lgKMgY ) = 1/2(2.00 + 8.25) =5.13 Analytical chemistry

  47. 2 终点误差 [Y]ep-[M]ep Et =  100% cMep [Y]sp10-pY-[M]sp10-pM Et= 100% cMsp [M]sp=[Y]sp= cMsp/KMY 10 pM -10-pM KMYcMsp Et=  pM = pMep - pMsp cMep=cMsp [M]ep = [M]sp10- pM [Y]ep = [Y]sp10-pY pM =-pY Analytical chemistry

  48. 例题:pH =10 的氨性buffer中,以EBT为指示剂, 用0.02mol/L EDTA滴定0.02mol/L Ca2+,计算 TE%,若滴定的是0.02mol/L Mg2+, Et又为多少?(已知pH=10.0时,lgY(H)=0.45, lgKCaY=10.69,lgKMgY=8.70;EBT: Ka2=10-6.3, Ka3=10-11.6, lgKCa-EBT=5.4,lgKMg-EBT=7.0) 解: lgKCaY =lgKCaY - lgY(H) = 10.24 pCasp = 1/2 (lgKCaY+pcCasp) = 1/2 (10.24+ 2)=6.10 EBT: EBT(H)= 1+[H+]/Ka2+[H+]2/Ka2Ka1 = 40 lg EBT(H) = 1.6 (可查p.397表14) Analytical chemistry

  49. 10-2.3 -102.3 Et= ×100%= -1.5% 10-2×1010.24 pCaep = lgKCa-EBT = lgKCa-EBT - lg EBT(H) = 5.4-1.6=3.8 可查p.397表14 pCa = pCaep -pCasp = 3.8-6.1 = -2.3 Analytical chemistry

  50. 100.3 -10-0.3 Et= ×100%=0.11% 10-2×108.25 lgKMgY = lgKMgY - lgY(H) = 8.7- 0.45 = 8.25 pMgsp = 1/2 (lgKMgY + pCCasp) = 1/2 (8.25+ 2) = 5.1 pMgep = lgKMg-EBT = lgKMg-EBT - lg EBT(H) = 7.0-1.6=5.4  pMg = pMgep -pMgsp = 5.4-5.1 = 0.3 Analytical chemistry

More Related