1 / 1

Wind characteristic in the wind corridor in Southern Pakistan, the effect of the monsoon

Wind characteristic in the wind corridor in Southern Pakistan, the effect of the monsoon N. Memon (1), S.E. Gryning (2), S. Anwar Khan (1), E. Batchvarova (2,3) memonnaeem@hotmail.com, sveg@dtu.dk . Alternative Energy Development Board, Ministry of Water and Power, Government of Pakistan

morwen
Download Presentation

Wind characteristic in the wind corridor in Southern Pakistan, the effect of the monsoon

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wind characteristic in the wind corridor in Southern Pakistan, the effect of the monsoon N. Memon (1), S.E. Gryning (2), S. Anwar Khan (1), E. Batchvarova (2,3) memonnaeem@hotmail.com, sveg@dtu.dk • Alternative Energy Development Board, • Ministry of Water and Power, Government of Pakistan • (2) Technical University of Denmark, • Wind Energy Department, Roskilde, Denmark • (3) National Institute Meteorology and Hydrology, • Bulgarian Academy of Sciences Coastal and inland sites, Measurements and Wind resource Wind energy in Pakistan The measurements reveal very generous conditions for harvesting of wind energy. Wind power depends not only on the mean wind but also on the variability of the wind which can be described by the Weibull distribution. Any help is welcome in Pakistan’s perpetual electricity shortage. The daily shortfall is an estimated 4,000-5,000MW, with a peak demand of 17,500MW during the summer. Resultant load shedding (blackouts) severely hampers business, industry and agriculture. However the country has vast potential for wind power production, about 50,000 MW of electricity on the 65km-long Gharo-Keti Bandar Wind Corridor in the southern part of Pakistan. FFC mast - inland The wind corridor of Pakistan Weibull distribution The two-parameter Weibull distribution can be expressed as where f(u) is the frequency of occurrence of the wind speed u, the scale parameter A has units of speed and k is the non-dimensional shape parameter. Hawks Bay mast - coastal The measurements reveal a strong seasonality in both the scale (A) and shape (k) parameter. During the monsoon period both the scale and the shape parameter are large as compared to mid-latitude (European) conditions (Gryning et al. 2013a, b), indicating a high mean wind but with a narrow distribution. The effect can likely be attributed to the monsoon as similar seasonal behaviour and values in this range are observed at all 8 meteorological masts in the region of the wind corridor. The Asian winter and summer monsoon The meteorological conditions are controlled by the monsoon, and therefore exhibit a considerable annual variability (Zubair et al. 2013). Pakistan has four seasons: a cool, dry winter from December through February; a hot, dry spring from March through May; the summer rainy season, or southwest monsoon period, from June through September; and the retreating monsoon period of October and November. The onset and duration of these seasons vary somewhat according to location. Winter monsoon of the region, northeasterly wind Summer monsoon of the region, southwesterly wind Conclusions Acknowledgements References The study was supported by the Danish Council for Strategic Research, project number 2104-08-0025 named “Tall Wind”, the Nordic Centre of Excellence CRAICC - TRI-NCoE and the COST ES1002 Action (WIRE); We express our deep sense of gratitude to AEDB and FFC Energy Limited for sharing the wind data with us. Zubair A., A. Farhan Khan and M. Umer Khan (2013). Elements of Monsoon Circulation and its Behavior Impact over Pakistan. European Academic Research, Vol. 1, Issue 5. ISSN 2286-4822, www.euacademic.org Gryning, S.-E., Batchvarova, E., and Floors, R. (2013a). A study on the effect of nudging on long-term boundary-layer profiles of wind and Weibull distribution parameters in a rural coastal area. Journal of Applied Meteorology and Climatology, 2(5):1201–1207 Gryning, S.-E., Batchvarova, E., Floors, R., Peña, A., Brümmer, B., Hahmann,A. N., and Mikkelsen, T. (2013b). Long-term profiles of wind and Weibull distribution parameters up to 600 m in a rural coastal and an inland suburban area. Boundary-Layer Meteorology. DOI: 10.1007/s10546-013-9857-3 The wind speed inland is stronger than at the coastline throughout the year for the period of the measurements. The wind direction at both masts is primarily SW. The Weibull distribution provides a good fit to the measured wind speed distribution. The scale parameter (A) in the Weibull distribution is larger than the wind speed and shows the same behaviour. The shape parameter (k) in the Weibull distribution shows a clear change with season. The larger values during the summer monsoon period reflect smaller variability in the wind speed . EMS 2013, 9-13 September 2013, Reading, UK - ASI13 Energy Meteorology

More Related