
This presentation is the property of its rightful owner.
Sponsored Links
1 / 13

Linear Inequalities PowerPoint PPT Presentation


  • 52 Views
  • Uploaded on
  • Presentation posted in: General

. <. >. . . . . Linear Inequalities. >. . >. <. <. . . . -7. -7. -2. -2. -1. -1. 0. 1. 1. 2. 3. 3. 4. 5. 5. 6. 7. 7. 8. -6. -6. -5. -5. -4. -4. -3. -3. 0. 4. 6. 8. 2.

Download Presentation

Linear Inequalities

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Linear inequalities

<

>

Linear Inequalities

>

>

<

<


Linear inequalities

-7

-7

-2

-2

-1

-1

0

1

1

2

3

3

4

5

5

6

7

7

8

-6

-6

-5

-5

-4

-4

-3

-3

0

4

6

8

2

There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation brackets. You should be familiar with both.

Remember---these mean the same thing---just two different notations.

[

circle filled in

squared end bracket

Both of these number lines show the inequality above. They are just using two different notations. Because the inequality is "greater than or equal to" the solution can equal the endpoint. That is why the circle is filled in. With interval notation brackets, a square bracket means it can equal the endpoint.


Linear inequalities

-7

-7

-2

-2

-1

-1

0

1

1

2

3

3

4

5

5

6

7

7

8

-6

-6

-5

-5

-4

-4

-3

-3

0

4

6

8

2

Remember---these mean the same thing---just two different notations.

Let's look at the two different notations with a different inequality sign.

)

circle not filled in

rounded end bracket

Since this says "less than" we make the arrow go the other way. Since it doesn't say "or equal to" the solution cannot equal the endpoint. That is why the circle is not filled in. With interval notation brackets, a rounded bracket means it cannot equal the endpoint.


Linear inequalities

Compound Inequalities

Let's consider a "double inequality" (having two inequality signs).

-7

-7

-2

-2

-1

-1

0

1

1

2

3

3

4

5

5

6

7

7

8

-6

-6

-5

-5

-4

-4

-3

-3

0

4

6

8

2

(

]

I think of these as the "inbetweeners". x is inbetween the two numbers. This is an "and" inequality which means both parts must be true. It says that x is greater than –2 andx is less than or equal to 3.


Linear inequalities

Compound Inequalities

Now let's look at another form of a "double inequality" (having two inequality signs).

-7

-7

-2

-2

-1

-1

0

1

1

2

3

3

4

5

5

6

7

7

8

-6

-6

-5

-5

-4

-4

-3

-3

0

4

6

8

2

)

[

Instead of "and", these are "or" problems. One part or the other part must be true (but not necessarily both). Either x is less than –2 orx is greater than or equal to 3. In this case both parts cannot be true at the same time since a number can't be less than –2 and also greater than 3.


Linear inequalities

-7

-7

-2

-2

-1

-1

1

1

3

3

5

5

7

7

-6

-6

-5

-5

-4

-4

-3

-3

0

4

6

8

Inequality notation for graphs shown above.

2

Interval notation for graphs shown above.

Just like graphically there are two different notations, when you write your answers you can use inequality notation or interval notation. Again you should be familiar with both.

[

0

2

4

6

8


Linear inequalities

This means x is unbounded above

-7

-2

-1

1

3

5

7

-6

-5

-4

-3

0

4

6

8

2

Let's have a look at the interval notation.

unbounded

[

For interval notation you list the smallest x can be, a comma, and then the largest x can be so solutions are anything that falls between the smallest and largest.

The bracket before the –1 is square because this is greater than "or equal to" (solution can equal the endpoint).

The bracket after the infinity sign is rounded because the interval goes on forever (unbounded) and since infinity is not a number, it doesn't equal the endpoint (there is no endpoint).


Linear inequalities

Squared bracket means can equal 4

Rounded bracket means cannotequal -2

-7

-2

-1

1

3

5

7

-6

-5

-4

-3

0

4

6

8

2

Let's try another one.

The brackets used in the interval notation above are the same ones used when you graph this.

(

]

This means everything between –2 and 4 but not including -2


Linear inequalities

This means x is unbounded below

This means the largest x can be is 4 but can't equal 4

-7

-2

-1

1

3

5

7

-6

-5

-4

-3

0

4

6

8

2

Let's look at another one

)

Notice how the bracket notation for graphing corresponds to the brackets in interval notation.

Remember that square is "or equal to" and round is up to but not equal. By the infinity sign it will always be round because it can't equal infinity (that is not a number).


Linear inequalities

-7

-2

-1

1

3

5

7

)

[

-6

-5

-4

-3

0

4

6

8

2

Now let's look an "or" compound inequality

When the solution consists of more than one interval, we join them with a union sign.

There are two intervals to list when you list in interval notation.


Linear inequalities

Properties of Inequalities.

Essentially, all of the properties that you learned to solve linear equations apply to solving linear inequalities with the exception that if you multiply or divide by a negative you must reverse the inequality sign.

So to solve an inequality just do the same steps as with an equality to get the variable alone but if in the process you multiply or divide by a negative let it ring an alarm in your brain that says "Oh yeah, I have to turn the sign the other way to keep it true".


Linear inequalities

Example:

-2 -2

We turned the sign!

- 4x - 4x

Ring the alarm! We divided by a negative!

+ 6 +6


Linear inequalities

Acknowledgement

I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint.

www.slcc.edu

Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum.

Stephen Corcoran

Head of Mathematics

St Stephen’s School – Carramar

www.ststephens.wa.edu.au


  • Login