1 / 25

Radiometric Nonidealities: A Unified Framework

1. Dept. Elect. Eng. Technion – Israel Institute of Technology. Radiometric Nonidealities: A Unified Framework. Anatoly Litvinov , Yoav Y. Schechner. Support: Ollendorff Foundation (BMBF), GIF. 2. Spatial Non-Uniformity. Iris. camera.

mio
Download Presentation

Radiometric Nonidealities: A Unified Framework

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 Dept. Elect. Eng. Technion – Israel Institute of Technology Radiometric Nonidealities:A Unified Framework Anatoly Litvinov , Yoav Y. Schechner Support: Ollendorff Foundation (BMBF), GIF

  2. 2 Spatial Non-Uniformity Iris camera A. Litvinov & Y. Schechner, radiometric nonidealities

  3. Spatial Non-Uniformity Temporal Non-Uniformity: Automatic Gain Control (AGC) gain time iris Litvinov, Schechner, radiometric nonidealities

  4. G AGC Automatic Gain Control (AGC) A. Litvinov & Y. Schechner, radiometric nonidealities

  5. 3 Image Mosaicing Standard seam removal: “feathering” Duplaquet (98) Burt; Adelson (83) Soderblum et. al (78) Jia; Tang (03) Shum; Szeliski (00) Levin; Zomet; Peleg; Weiss (04) Not addressing the root of inconsistencies A. Litvinov & Y. Schechner, radiometric nonidealities

  6. 4 Nonlinear Radiometric Response electronic readout light intensity FillfactoryCMOSchip

  7. 5 Image Intensifier Nonlinear Radiometric Response Phosphor screen: nonlinear Photo cathode CCD Accelerating potential Fiber optic coupler A. Litvinov & Y. Schechner, radiometric nonidealities

  8. 42 The Eye Spatial non-uniformity Radiometric response Auto gain A. Litvinov & Y. Schechner, radiometric nonidealities

  9. 6 Prior Techniques Pre-calibrations Based on edge detection Lin et al. (04) Spatial non-uniformity estimation Combined AGC and radiometric response Only radiometric response Standard target Integrating sphere Only spatial non-uniformity Exposure variations Debevec; Malik (98) Mann; Picard (95) Only radiometric response Mitsunaga; Nayar (99) Only radiometric response Only spatial non-uniformity Schechner; Nayar (01) not including spatial non-uniformity Mann; Mann (01) Kim; Pollefeys (04) Candocia; Mandarino (05) AND OTHERS …

  10. visible mismatch Spatial non-uniformity pre-calibration Integrating Sphere 97 % - not accurate enough A. Litvinov & Y. Schechner, radiometric nonidealities

  11. 7 non-uniformity AGCnonlinearity We Achieve : spatial non-uniformity Blind estimation of: light intensity electronic readout pixel A. Litvinov & Y. Schechner, radiometric nonidealities

  12. 8 non-uniformity AGCnonlinearity Without “seam-removal” steps Blind estimation of: light intensity electronic readout pixel A. Litvinov & Y. Schechner, radiometric nonidealities

  13. 10 Camera Model M(x) E G r(I) A. Litvinov & Y. Schechner, radiometric nonidealities

  14. r -1 log log{r[v(x)]} = log(G) + log[M(x)] + log[I(x)] -1 ρ(v) - m(x) – g = i gain grayscale value of x irradiance of pixel x spatial non-uniformity of x radiometric response r[ ] G M(x) v(x) = I(x) m(x) ρ(v) g i A. Litvinov & Y. Schechner, radiometric nonidealities

  15. 12 i i s i N 1 B = g ρ(v) - m(x) – g = i 1 g F ρ (0) 1 -1 -1 1 -1 -1 ρ (255) 1 -1 -1 m (x=1) = 1 -1 -1 m (x=N) 1 -1 -1 1 -1 -1 1 -1 -1 A. Litvinov & Y. Schechner, radiometric nonidealities

  16. 13 Bs = i B γs = γi γ ^ ρ(v)= γρ (v) ^ -1 r (v)= [r(v)] -1 ^ γ ^ m(x)= γm(x) exp M(x)= M(x) ^ ^ γ g = γg G = G f f f f A. Litvinov & Y. Schechner, radiometric nonidealities

  17. 14 An Image Invariance ^ log I = γlog I A. Litvinov & Y. Schechner, radiometric nonidealities

  18. 15 Nevertheless … Mutually Consistent A. Litvinov & Y. Schechner, radiometric nonidealities

  19. 16 Frame: p Frame: k m(x) : log of mask at pixel x r(v) : log of inverse-radiometric response ρ(v ) -ρ(v ) - m(x ) + m(x ) - g + g = 0 p p k k p k g:log of gain at frame f : f ρ(v ) – m(x ) - g= log[I(x)] k k k ρ(v ) – m(x )-g= log[I(x)] p p p A. Litvinov & Y. Schechner, radiometric nonidealities

  20. g 1 ρ(v ) -ρ(v ) - m(x ) + m(x ) - g + g = 0 p p k k p k g F ρ (0) 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 ρ (255) m (x=1) -1 1 -1 1 -1 1 = 0 1 -1 -1 1 -1 1 m (x=N) 1 -1 -1 1 -1 1 Rs = 0 A. Litvinov & Y. Schechner, radiometric nonidealities

  21. Experiment: AGC, Vignetting, Gamma 17 radiometric response transmittance (vignetting) amplifier gain 1 1 irradiance 4 0 pixel 0 graylevel 460 255 0 frame (time) 1 15

  22. Rs = 0 SVD solution Null space of R s= 0 s =[ ρ= const , m =const , g =const ] 1 2 3 T A. Litvinov & Y. Schechner, radiometric nonidealities

  23. Trivial Solutions electronic readout r light intensity ρ(v) = const exp light intensity r -1 electronic readout A. Litvinov & Y. Schechner, radiometric nonidealities

  24. hist hist hist Entropy Maximization A. Litvinov & Y. Schechner, radiometric nonidealities

  25. 18 1 0 460 A Unified Framework Image invariance ^ log I = γlog I 4 1 0 1 0 15 255 Anatoly Litvinov Yoav Schechner

More Related