RIAPA
This presentation is the property of its rightful owner.
Sponsored Links
1 / 18

A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells PowerPoint PPT Presentation


  • 115 Views
  • Uploaded on
  • Presentation posted in: General

RIAPA. A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells. Khadije Khalili 1 , Hossein Movla 2 , Hamed Azari Najafabadi 1 1 Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, Iran

Download Presentation

A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

RIAPA

A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells

Khadije Khalili1, Hossein Movla2, HamedAzari Najafabadi1

1 Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, Iran

2 Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz, Iran


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Contents

☼A short history of solar cells

☼Polymer Solar Cell

☺Principle and device configuration

☼Organic Solar Cell Materials

☼ The objectives of our work

☺ Electric characteristics

☺ Results

☼ References

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

A short history of solar cells

Medium efficiency , but expensive

  • First Generation

  • - Single crystal silicon wafers (c-Si)

  • Second Generation

  • - Amorphous silicon (a-Si)

  • - Polycrystalline silicon (poly-Si)

  • - Cadmium telluride (CdTe)

  • - Copper indium gallium diselenide (CIGS) alloy

  • Third Generation

  • - Nanocrystal solar cells

  • - Photoelectrochemical (PEC) cells

  • • Gräetzel cells

  • - Polymer solar cells

  • - Dye sensitized solar cell (DSSC)

  • Fourth Generation

  • - Hybrid - inorganic crystals within a polymer matrix

Cheap , but low efficiencies

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Polymer Solar Cell

Principle and device configuration:

  • Absorption of light

  • Exciton dissociation

    • Double-layer device

    • Bulk-heterojunction (BHJ)

  • Charge transportation

 Li Gui, LU GuangHao, et al. Progress in polymer solar cell, Chinese Science Bulletin (2007)

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Organic Solar Cell Materials

Most important Semiconducting polymers as

1- electron donor polymers:

(MEH-PPV), (MDMOPPV), poly(3-hexeylthiophene) (P3HT), (PFO-DBT), (PCDTBT), regioregular poly(3-hexeylthiophene) (RR-P3HT)

2- hole acceptor materials:

fullerene (C60) 6,6-phenyl C61 -butyric acid methyl ester (PC61BM), 6,6-phenyl C71-butyric acid methyl ester (PC71BM)

and photovoltaic devices are fabricated on cleaned glass substrates with a patterned ITO layer. Other common materials are consist of the conducting polymer poly-wethylenedioxy thiophenex:poly-wstyrene sulfonatex(PEDOT:PSS), the active layer (P3HT:PCBM), and aluminum electrodes are thermally evaporated.

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

The objectives of our work are:

  • We choose a polymer solar cell with P3HT:PCBM composite as photoactive layer.

  • Considering Shottky contacts, barrier lowering due to the image potential, Langevin recombination, and field dependent mobility, we adopt the time-independent one-dimensional drift-diffusion model.

  • Using the boundary conditions at x=0 and x=d and this fact that , we solve Poisson’s equation and find expressions of current density equation, charge carrier distribution, and J-V characteristics.

  • By using calculated equations, we plot charge carrier density and the terminal current versus cell thickness with different applied voltage, from equilibrium to built-in voltage.

  • Finally, we compare our calculations for two thickness 100 and 200nm.

 A. B. Walker, S. J. Martin, A. Kambili, J.Phys.: Condense. Matter 14, 9825(2002)

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Electric characteristics:

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Results

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Fig 1. Variation in the band edge of the semiconductor in terms of the active region distance in thermal equilibrium for different donor like (n-type) dopings.

100 nm

200 nm

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Fig 2. Variation of electron mobility versus cell voltage.

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Fig 3. The injected electron profile in a semiconductor with cathode on the right hand side and anode on the left hand side. In the case of V=0 is thermal equilibrium.

100 nm

200 nm

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Fig 4. Diffusion and drift currents at 300 K in the double Schottky barrier device at 0.5 V. Diffusion current is larger than the drift current and the two currents flow in the opposite directions.

100 nm

200 nm

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Fig 5. Calculated l J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark and under different illumination intensities.

100 nm

40 mw/cm2

60 mw/cm2

80 mw/cm2

40 mw/cm2

60 mw/cm2

80 mw/cm2

200 nm

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Fig 7. Calculated J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark and under different illumination intensities. The dashed blue line is the Lampert et.al. calculated dark current.

40 mw/cm2

60 mw/cm2

80 mw/cm2

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Fig 8. Calculated J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell for different thickness.

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

References

[1] V. D. Mihailetchi, Device Physics of Organic Bulk Heterojunction Solar Cells, MSc Ph.D.-thesis series 2005-14,ISSN 1570-1530.

[2] H. Hoppe, N.S.Sariciftci, J. Mater. Res. 19, (2004) 1924.

[3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and f.wudl, Science 258 (1992) 1474.

[4] G. Yu, J. Gao,J. C. Hummelen,F. Wudl, and A. J. Heeger, Science 270 (1995) 1789.

[5] P. W. M Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19 (2007) 1551.

[6] S. S. Pandy, W. Takashima, S. Nagamatsu , T. Endo, M. Rikukawa, K. Kaneto, Jpn. J. Appl. Phys. 39 (2000) 94.

[7] Z. Bao, A. Dodabalapour, A. Lovinger, Appl. Phys. Lett. 69 (1996) 4108.

[8] H. Sirringhaus, N. Tessler and R. H. Friend, Science 280 (1998) 1741.

[9] A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller and M. Chhowalla, Appl. Phys. Lett. 87 (2005) 203511.

[10] Q. H. Xu, D. Moses, A. J. Heeger, Phy. Rev. B 67 (2003) 245417.

[11] C. J. Brabec,G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, N. S. Sariciftci, Chem. Phys. Lett. 340 (2001) 232

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

[12] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, A. P. Alivisatos, Adv.Funct.Mater. 13 (2003) 73

[13] J.Y.Kim, K.Lee, N.E.Coates, D.Moses, T.Nguyen,M.Dante,A.J.Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science 317(2007) 222.

[14] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Func. Mater. 11 (2001) 15.

[15] H. Hoppe, N. Arnold, D. Meisner and N. S. Saricirtci: Modeling the optical absorption whit in conjugated polymer/fullerene-based bulk heterojunction organic solar cells, Sol. Energy Mater. Sol. Cells. 80, 105 (2003)

[16] P. Kumar, S. C. Jain, V. Kumar, S. Chand, R. P. Tandon, J. Appl. Phys. 105, 104507 (2009).

[17] A. B. Walker, S. J. Martin, and A. Kambili, J. Phys.: Condens. Matter 14, 9825 (2002).

[18] S. J. Martin, Alison B. Walker, A. J. Campbell and D. D. C. Bradley, J. Appl. Phys. 98, 063709 (2005).

[19] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys. 94, 6849 (2003).

NSSC90


A model for electric characteristics of p3ht pcbm bulk heterojunction solar cells

Appreciate for your interest

NSSC90


  • Login