Nuclear holocaust in a terrorist age
This presentation is the property of its rightful owner.
Sponsored Links
1 / 57

Nuclear Holocaust in a Terrorist Age PowerPoint PPT Presentation


  • 81 Views
  • Uploaded on
  • Presentation posted in: General

Nuclear Holocaust in a Terrorist Age. My Purpose. To underscore the importance of keeping track of weapons grade Uranium as a deterrent to nuclear terrorism

Download Presentation

Nuclear Holocaust in a Terrorist Age

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Nuclear holocaust in a terrorist age

Nuclear Holocaust in a Terrorist Age


My purpose

My Purpose

  • To underscore the importance of keeping track of weapons grade Uranium as a deterrent to nuclear terrorism

  • To explain how we are vulnerable to sufficiently determined terrorists both at home and abroad, who would seek to smuggle weapons grade uranium fuel into or out of our country.


My purpose1

My Purpose

  • To highlight the problems created by the downfall of the former Soviet Union.


The science of uranium and plutonium

The Science of Uranium and Plutonium

  • Uranium is one of the most abundant elements in the Earth’s core.

    • Mined as uranium ore “pitchblende”

    • Element #92 (92 protons in its nucleus)

    • Forms: several isotopes:

      • 92U238 –non fissionable (99%) – 146 neutrons

      • 92U235 – fissionable (0.7%) – 143 neutrons


The science of uranium and plutonium1

The Science of Uranium and Plutonium

  • Pure uranium is separated chemically from pitchblende and is available in Fluorides, Oxides (yellow cake) and other forms


The science of uranium and plutonium2

The Science of Uranium and Plutonium

  • Plutonium

    • First isolated by Glenn T. Seaborg at U of Cal. (Berkeley) in 1940.

      • Many isotopes are known. Most particularly 94Pu239 (94 protons/145 neutrons)

      • A warm metal because of radioactive decay. Used for heating.


The science of uranium and plutonium3

The Science of Uranium and Plutonium

  • Fission of Uranium

    • To produce plutonium

      92U23892U239 93N239 + β-

      94Pu239 + β-

      (half-life 24,100 years)


The science of uranium and plutonium4

The Science of Uranium and Plutonium

  • Radioactive Decay of Uranium

    • All fission products are radioactive. Some with half-lives of thousands of years.


The science of uranium and plutonium5

The Science of Uranium and Plutonium

  • How to separate fissionable U235 from non-fissionable U238

    • Gaseous Diffusion

    • Electromagnetic separation

  • Highly enriched U235 sufficient for making bombs is >80% (HEU)


The science of uranium and plutonium6

The Science of Uranium and Plutonium

  • The Chain Reaction

    • Primary neutrons =>secondary neutrons =>tertiary neutrons

    • In each fission event, mass is converted into a very large amount of energy


The science of uranium and plutonium7

The Science of Uranium and Plutonium

  • The Chain Reaction

    • Critical Mass (density) is the minimum mass necessary for a sustained uncontrollable nuclear chain reaction.


The science of uranium and plutonium8

The Science of Uranium and Plutonium

  • How much do we need to make a bomb?

    • A sustained chain reaction implies no more than one secondary fission event per primary fission event (a nuclear reactor)


History

History

  • 6.6 Byr ago-Uranium is believed to be formed in a supernova.

  • 1789 Element 92 is discovered in pitchblende by German pharmacist Martin Heinrich Klaproth


History1

History

  • 1896- Uranium discovered to be radioactive by Antoine Becquerel. Uranium is named after the newly discovered planet, Uranus


History2

History

  • 1905-Albert Einstein discovers famous equation from special relativity that speaks of the equivalence of mass and energy

    E=mc2


History3

History

  • 1907 Ernest Rutherford converts nitrogen to oxygen in the first man-made nuclear reaction

  • 1932-James Chadwick proposes “the neutron”. His ideas inspire Enrico Fermi (US) and Otto Hahn and Fritz Straussman (Ger).


History4

History

  • 1938-1939: The idea of a fission-induced chain reaction is conceived by Leo Szilard. He begins work with Fermi and others at the University of Chicago

Fermi Szilard


History5

History

  • Bohr and other leading scientists have escaped Nazi-held countries and start to work for the allies.

    • Bohr expresses concern that Nazis can develop a nuclear weapon.


History6

History

  • Szilard, Edward Teller, and Einstein collaborate on a letter to President Roosevelt advising him of this capability. This begins project “Manhattan”.


History the german manhattan project

History:The German Manhattan Project

  • Werhner Heisenberg attempts Berman bomb to split uranium.

    • It is believed he did not understand the difference between a reactor and a bomb


History the german manhattan project1

History:The German Manhattan Project

  • It is believed that the German project failed for several reasons:

    • Deliberate attempts to sabotage the projects by scientists

    • Many of Germany’s best scientists were Jewish

      • Albert Einstein

      • Edward Teller

      • Niels Bohr

      • Enrico Fermi’s wife


History the german manhattan project2

History:The German Manhattan Project

  • It is believed that the German project failed for several reasons:

    • Lack of availability of HEU

      • Stores in Finland and Norway were destroyed by resistance and British commandos.

    • The project was poorly organized and research was decentralized.


History the german manhattan project3

History: The German Manhattan Project

  • September 1941, Niels Bohr meets with Heisenberg in Copenhagen where Heisenberg shares his ideas.

  • February 1942, Heisenberg admits to Nazi war minister Albert Speer that a fission bomb is not possible for many years to come.

Nonetheless, the Nazis begin work on a dispersing bomb.


History the manhattan project

History: The Manhattan Project

  • Dec. 6, 1941: US congress commits $2B to the Manhattan Project

  • 1940-1941: Plans are in full swing

    • A HEU separation plant at Oak Ridge, Tenn.

    • A Pu production facility at Hanover, Wash.

    • Headquarters and main physics experiments at LANL (a converted boys school), in Nevada.

    • J. Robert Oppenheimer heads research on the project after Einstein refuses. General Leslie Groves is in charge.

    • An entire military-industrial-and academic research complex is created, which is still in existence.


History challenges to be overcome

History: Challenges to be Overcome

  • 1. How to purify the fuel?

    • 92U235 and 94Pu239 at Oak Ridge

      • Magnetic Separation: (Calutrons) many wires needed- “racetracks”

      • Copper and Silver borrowed from the US Mint.

      • 10% of all US electric power used for 2 years all to produce only 7g of HEU.

      • Final HEU used on “Little Boy”


History challenges to be overcome1

History: Challenges to be Overcome

  • The X-10 reactor at Oak Ridge uses neutrons released from U235 to turn U238 into Pu. Similar to reactors at Hanover.

  • S-50 plant at Oak Ridge separated the isotopes by convection with steam coming from the K-25 plant (right).


History challenges to be overcome2

History: Challenges to be Overcome

  • 2. How to achieve critical mass?

    • The Gun approach

      • HEU slugs are slammed together at high enough speeds in a “gun” device.

      • “Little Boy” dropped on Hiroshima, Aug. 6, 1945 used 60 kg of HEU

      • Gun bombs may use either U or Pu with a tamper


History challenges to be overcome3

History: Challenges to be Overcome

  • 2. How to achieve critical mass?

    • The Implosion approach: Critical density is achieved by implosion of a shock wave in a spherical core similar to the implosion of a massive star to produce a supernova


History challenges to be overcome4

History: Challenges to be Overcome

  • 2. How to achieve critical mass?

  • The shock wave is produced by detonation of dynamite

  • Because of the escape of neutrons, implosion devices may only use Pu.

  • “Fat Man” dropped on Nagasaki on Aug. 9, 1945; 6.2 kg of Pu; yield: 21-23 kT of TNT.


History challenges to be overcome5

History: Challenges to be Overcome

  • “Gadget” –an implosion bomb test detonation atop a 150 ft tower on July 16, 1945 in New Mexico 210 miles from Alamogordo in a place called “Journada Del Muerto” (Journey of Death) code named “Trinity”.

  • Heat-radiation melted sand created a new mineral “Trinitite”.


Analysis of an atomic explosion

Analysis of an Atomic Explosion

  • In the first few milliseconds there is a bright flash followed by an outward rushing shock wave traveling at the speed of sound.

  • Thermal X-Rays produced by either one of two mechanisms

    • Directly from decay of U235 or Pu239

    • Indirectly by the slow down of electrons (β particles) which are also direct by-products of decay.

      Trinity explosion

      Google Video


Analysis of an atomic explosion1

Analysis of an Atomic Explosion

  • An atomic fireball or “mushroom cloud” is created and rises.

  • Outward flow of air is followed by inward flow into ensuing firestorm.

  • Debris from ground is lifted up into the fir4eball then falls back to Earth as “radioactive fallout”-the silent killer.

  • Fireball rises into the air then dissipates.


History7

History

  • August 1945. Japan surrenders


History post wwii the cold war heats up

History: Post WWII: The Cold War Heats Up

  • 1946: Work begins in a fusion bomb-the hydrogen bomb.

  • 1949: Soviet Union detonates their own atomic explosion: Klaus Fuchs smuggles secrets with help from Julius and Ether Rosenberg. Fuchs is deported. The Rosenbergs were executed.


History post wwii the cold war heats up1

History: Post WWII: The Cold War Heats Up

  • Edward Teller takes over production of a “hydrogen bomb”, inappropriately called the “Atomic Bomb” or “A-Bomb”


History post wwii the cold war heats up2

History: Post WWII: The Cold War Heats Up

  • 9 May, 1951: “Operation Greenhouse” produces “George” which confirmed that a fission device could produce the conditions necessary for a hydrogen fusion bomb.

  • 1 Nov. 1952: “Operation Ivy” produces “Mike”, the first two-stage thermonuclear fusion device: 1H2 + 1H3 => 2He4 + n


History post wwii the cold war heats up3

History: Post WWII: The Cold War Heats Up

  • 1950’s – 1960’s: New concepts in fission primary and fusion secondaries developed. Delivery systems changed from planes to ICBM’s to MIRV’s.

  • U.S. leads the world with over 1100 test detonations.


History post wwii the cold war heats up4

History: Post WWII: The Cold War Heats Up

  • “Atoms for Peace” program: Both superpowers agree to produce 100’s of nuclear reactors for themselves and for 50 other nations.

    • Export restrictions were lifter in response to demands for longer-lived fuel.

    • Reactors were supplied with bomb grade HEU (≥80% 92U235)

    • 10 Metric tons of HEU still resides in nations that do not posses nuclear weapons. Enough for 150-200 gun-type devices, as of 2005.


History post wwii the cold war heats up5

History: Post WWII: The Cold War Heats Up

  • 1957: IAEA organized as an independent nuclear watchdog agency.

  • 1963: “Limited Test Ban Treaty” limits nuclear testing to underground where detection methods are limited to seismic studies and radioactive effluent in in the air.


History post wwii the cold war heats up6

History: Post WWII: The Cold War Heats Up

  • 1968: “Nuclear Non-Proliferation Treaty” limited the spread of nuclear weapons to 5 nations: U.S., Russia, U.K., France, and China.

    • 188 nation agree.

    • Several rogue states have defied it (Israel, North Korea, and Pakistan). Iran threatens to join the list.


History post wwii the cold war heats up7

History: Post WWII: The Cold War Heats Up

  • 1970’s: U.S. takes steps to prevent diversion of bomb grade fuel.

    • Conversion of American designed reactors to run on LEU.

      • 41 reactors to date have been retrofitted.

  • High powered research reactors still need HEU.

  • 1980’s: A new spirit of openness “Glasnost” and “Perestroika”


  • History the fall of the soviet union end of the cold war

    History: The fall of the Soviet Union: End of the Cold War

    • 1991: The installation of democracy in for former Soviet Union is greeted with economic collapse.

    • Many former members of the Soviet bloc became independent states (Turkmenistan, Uzbekistan, Belarus, …)


    History the fall of the soviet union end of the cold war1

    History: The fall of the Soviet Union: End of the Cold War

    • Soviet record keeping is very poor.

      • 18 incidents of nuclear smuggling between 1993 and 2004 were reported by the IAEA.

      • Incidents were reported only after material was discovered, and so no one is exactly sure how much if any HEU is missing.

      • Breaches have been plainly evident.

      • US works with Russia to secure some 600 tons of HEU and 30,000 weapons.


    What is happening now the problem

    What Is Happening Now? : The Problem

    • The Russian government appears unconcerned about its lax security and dangers posed by terrorists.

      • Putins’ government is increasingly resistant to visits by foreigners to its nuclear programs.

      • 50 tons in civilian use support 140 reactors for scientific and industrial use, and for medical purposes.

      • 50% in Russia alone, with much of this in or near urban areas.


    What is happening now the problem1

    What Is Happening Now? : The Problem

    • Today, it is feared that Al-Qaeda might acquire HEU and detonate a crude gun-type device before authorities can respond.

      • 10 metric tons resides in nations that will not develop nuclear weapons. This is enough for 150-200 gun-type devices, as of 2005.


    What is happening now a two fold solution

    What Is Happening Now? : A Two-Fold Solution

    • 1. Eliminate the use of HEU wherever possible.

    • 2. Dilute all accumulated stocks with LEU that is not useable in weapons.

    • In the 1990’s U.S. begins to cooperate with Russia in securing and eliminating HEU stockpiles.

    • Since 1999, US has been buying and blending down 7 tons of civilian HEU.


    What is happening now a two fold solution1

    What Is Happening Now? : A Two-Fold Solution

    • Some of this is spent reactor fuel, which is 80% HEU, but is still radioactive, and therefore is “self-protective”.

    • After 9/11, congress intensifies pressure o the DOE to step up its efforts to secure civilian HEU worldwide.

      • Repatriate all used and unused Russian civilian HEU by 2010

      • Repatriate all spent US fuel by 2019


    What is happening now a two fold solution2

    What Is Happening Now? : A Two-Fold Solution

    After 9/11, congress intensifies pressure o the DOE to step up its efforts to secure civilian HEU worldwide.

    • Retrofit all US civilian research reactors to LEU fuel by 2014

    • Much progress has been made in retrofitting Russian civilian reactors but more needs to be done.


    What is happening now a two fold solution3

    What Is Happening Now? : A Two-Fold Solution

    • The IAEA estimates that 80% of the world’s aging research reactor fleet could be decommissioned with HEU stores bringing in approximately $20M/ton for dilution to LEU.

    • “If the U.S. and its allies were to take seriously the challenge of preventing nuclear terrorism, civilian HEU could be eliminated …. in 5-8 years. Continued delay in completing this task only extends the window of opportunity to would-be terrorists”

      Glaser and Von Hippel: SciAm (2006)


    What s happening now uranium smuggling how do we stop it

    What’s Happening Now?: Uranium Smuggling: How Do We Stop It?

    • The use of HEU overseas by foreign governments is the responsibility of the Department of Energy (DOE)

    • Detection of nuclear smuggling is the responsibility of the Department of Homeland Security (DHS).

    • We need effective intelligence.


    What s happening now uranium smuggling how do we stop it1

    What’s Happening Now?: Uranium Smuggling: How Do We Stop It?

    • U.S. outfits border crossing stations in former Soviet bloc countries.

      • Several agencies are involved

        • DOE: Second Line of Defense Program (SLOD)

        • DHS

        • Department of State

    • 39 sites

    • 200 attempts uncovered in 2004, yet breaches are still possible.


    What s happening now uranium smuggling how do we stop it2

    What’s Happening Now?: Uranium Smuggling: How Do We Stop It?

    • In 2003, DOE (SLOD/Mega Ports Initiative): Ports all over the world receive x-ray scanners and ultra-sensitive radiation detectors.

    • Detection Techniques – active

      • X-ray imaging exposes lead enclosures

  • Detection Techniques – passive

    • Gamma ray and neutron imaging induce a small amount of fusion


  • What s happening now uranium smuggling how do we stop it3

    What’s Happening Now?: Uranium Smuggling: How Do We Stop It?

    • Once detected, a suspicious container can be searched by inspectors with belt-worn radiation pagers.

    • Smugglers could carry sources for a dirty bomb, a dispersant driven by a conventional weapon that disperses radioactive material such as Cs137, or Sr90.

      • These had been scavenged from radio-isotope thermal generators left in the wilds of the former Soviet Union.


    What s happening now uranium smuggling how do we stop it4

    What’s Happening Now?: Uranium Smuggling: How Do We Stop It?

    • Sources are detected and categorized by their spectra (counts versus energy, in Kev)

      • These material are efficient, but not foolproof.


    What s happening now uranium smuggling weaknesses in the system

    What’s Happening Now?: Uranium Smuggling: Weaknesses in the System

    • If sufficiently determined terrorists are able to elude detection, it will bee in a manner that we cannot expect. Our methods are a deterrent, but are not foolproof.

    • Fissionable materials from a nuclear weapon, yet not feasible for dirty bombs would be hard to detect.


    What s happening now uranium smuggling weaknesses in the system1

    What’s Happening Now?: Uranium Smuggling: Weaknesses in the System

    • Smugglers could place shielding around nuclear materials or attempt to disquise them with normally radioactive materials, or “interference cargo”. These include:

      • Fertilizer

      • Kitty litter

      • Television sets

      • Granite slabs

      • Road Salt

    • Smoke Detectors

    • Glazed ceramics

    • Medical Isotopes


    What s happening now uranium smuggling weaknesses in the system2

    What’s Happening Now?: Uranium Smuggling: Weaknesses in the System

    • “If we are successful in doing so for long enough … these efforts will have been of great benefit to the nation”

      Kouzes Amer. Scientist (2005)


  • Login