Neutrino physics
Download
1 / 53

Neutrino Physics - PowerPoint PPT Presentation


  • 76 Views
  • Uploaded on

Neutrino Physics. L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006. Content. Neutrino sources Intrinsic properties oscillations masses and mixing parameter Neutrinos as probes from the Earth from astrophysical sources. Why are neutrinos intresting ?.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Neutrino Physics' - milo


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Neutrino physics

Neutrino Physics

L. Oberauer, TU München

Graduiertenkolleg

Bad Honnef, August 2006


Content
Content

  • Neutrino sources

  • Intrinsic properties

    oscillations

    masses and mixing parameter

  • Neutrinos as probes

    from the Earth

    from astrophysical sources


Why are neutrinos intresting ?

Interactions w w,e w,e,s

Charge 0 -1 +2/3 -1/3

  • Neutrinos undergo only weak interactions

  • Neutrinos are neutral – intrinsic properties

  • Neutrinos as probes – astrophysical applications


Natural Neutrino Sources

(experimentally verified)

Atmosphere (since ~1990)

Sun

(since 1970)

Earth (since 2005)

Supernovae (1987)


Natural Neutrino Sources

(not yet verified)

Big Bang

Active galactic nuclei

Supernovae remnants ?,

Gamma ray bursts ?,

Supernovae relic neutrinos ?...


Energy Spectra of Astrophysical neutrinos

thermal sources

Non-thermalsources


Neutrinos (homemade)

Nuclear Reactors

(beta decays of fission products: ne)

Accelerators

pion production and subsequent decay in flight: nm


Intrinsic Neutrino Properties

  • Neutrino masses ?

  • Neutrino mixing ?

  • Dirac or Majorana particle ?

  • CP violation ?

  • Neutrino magnetic moment ?

Neutrino oscillations observed,

Missing mixing angle Q13

Absolute masses and hierarchy ?


Survival probability:

0

3

2

1

L in Losz

Neutrino Oscillations


L ≈ 20 km

atmosphericneutrinos:Ev ~ GeV

L ≈ 13000 km

Oscillations and Atmospheric Neutrinos

Pion production and subsequent decays (incl. muon)


Atmospheric Neutrinos and SuperKamiokande

50 kt Water Cherenkov Detector

Charged current reactions

nm + N ->m + N` and

ne + N -> e + N`


Muon events

Electron events

νμ

νe

m

e

No-oscillation

Oscillation

Up going

Up going Neutrinos


Result atmospheric Neutrino-Oscillations

  • Confirmed by

  • MACRO (Gran Sasso)

  • Soudan (USA)

  • K2K accelerator long baseline (250 km) experiment

  • MINOS (USA) acc. exp. in 2006

Best fit:m2atm = 2.5×10-3 eV2

sin22θatm = 1.0


Neutrino Energy in MeV

Oscillations and Solar Neutrinos



Sudbury neutrino observatory sno
Sudbury Neutrino Observatory SNO

  • charged current interaction (cc)

    ne+ D -> p + p + e

  • neutral current interaction (nc)

    nx + D ->nx + p + n

  • elastic Neutrino-Electron scattering (cc + nc)

    nx+ e ->nx + e

1kt Cherenkov Detector with heavywater


Sno result
SNO Result

  • Flavour transition discovered: 7 sigma !

  • Reasonable agreement with solar model

Neutrinos from the Sun (ne) transform into nmor nt !


Solar neutrino oscillation
Solar Neutrino Oscillation

  • Determination of

    Q12 ~ 340

  • ne nm,t

  • Dm2 ~ 8 x 10-5 eV2

  • Confirmation by reactor experiment KamLAND


The solar matter effect evidence by gallex gno
The solar matter effect – evidence by GALLEX/GNO

  • Evidence for matter effect inside the Sun

  • m2 > m1

  • Why are neutrino masses so small?

  • GUT

  • Leptogenesis

Survival probability electron neutrino

SNO

8B

GALLEX/GNO

pp- 7Be


Phys. Rev. Lett. 90 (2003) 021802

Reactor Experiments

ILL 1979

Gösgen (1986)

Chooz (1998)

Bugey (1994)

Evidence for n Oscillation



Parametrization Neutrino mixing

Flavor Eigenstates

Mass Eigenstates

θsol

θ13, δ

θatm

2 mixing angles are measured: Q12 ~ 340 Q23 ~ 450

Q13 ?

CP violating phase d ?

New experiments


Q 13 from reactors
Q13 from reactors?

P(nene) = 1

– cos4q13 sin2 2q12 sin2(Dm2sol L/4E) –

sin2 2q13 sin2 (Dm2atm L/4E)

no CP terms

no matter effects

solar

P

atmospheric

L/E(km/MeV)


Letter of intent double chooz
Letter of Intent: Double-Chooz

Near Detector for reactor monitoring

  • d~1.05 km

  • P~8.4 GW

  • 300mwe far detector

  • no excavation for far detector

Far Detector (~300mwe shielding)


Double-CHOOZ(far) Detector

Shielding steel and external vessel

7 m

Target- Gd loaded scintillator:

~ 85 /d (far) and ~ 4 103/d (near)

Gamma catcher: scintillator with no Gd

7 m

BUFFER Mineral Oil

7 m

Inner veto

photomultipliers

Puit existant


Sensitivity of double chooz
Sensitivity of Double Chooz

Exclusion limit 90% cl for

dm2 = 2.8 10-3 eV2

and a final systematic uncertainty of 0.6%



Detector

Precision Tracker (PT)Universität Hamburg:

Aktives Target:200.000 Blei-Emulsions-Ziegel= ca. 1.800 Tonnen

Universität Münster

8.3kg


N m n t sensitivity
nm→nt sensitivity

full mixing, 5 years run @ 4.5 x1019 pot / year

(…) with CNGS beam upgrade (X 1.5)



Data analysis of 30 h measurement and 55 t water as target

Time of flight (CERN to LNGS) ~ 2.4 ms

Cosmic muons (background)



13 with accelerator physics

(anti-v)

with

Θ13 with accelerator physics

Present limit from CHOOZ: sin2(213) < 0.2

Neutrino appearance:

θ13 , δCP, Mass hierarchy abut degeneracy & correlation effects!


Neutrino superbeam projects
Neutrino Superbeam Projects

  • Japan:

    • T2K – phase I: 0.75MW (JPARC) + SuperK (22.5kt) (ab 2009)sin22q13>0.006 (90%) (5 Jahre)

    • T2K – phase II: 4 MW + HyperK (500-1000 kt) (≥ 2015)

  • USA:NOvA: Fermilab NuMI beam (0.4 MW) +off-axis detector (surface!, 50kt) (ab 2009)


Sensitivity of future experiments on 13
Sensitivity of future experiments onθ13

← reactor

← super beam

90% CL

from Huber, Lindner, Rolinec, Schwetz, Winter hep-ph/0403068


Absolute neutrino mass measurements

Absolute Neutrino Mass Measurements

Kinematic tests (tritium decay)

Search for the neutrinoless double-beta decay


Direct mass experiments tritium decay

Mainz Data (1998,1999,2001)

Direct Mass Experiments: Tritium β-Decay

E0 = 18.6 keV


TheKArlsruhe TRItium Neutrino

Experiment

Commissioning in

2008mv < 0.2eV (90%CL)

KATRIN

~70 m beamline, 40 s.c. solenoids


Neutrinoless double beta decay

u

e-

d

ne

L=2

W-

ne

W-

d

e-

u

Heidelberg-Moskau Collaboration, Eur.Phys.J. A12 (2001) 147

IGEX Collaboration, hep-ex/0202026, Phys. Rev. C59 (1999) 2108

Neutrinoless Double-Beta-Decay

0: (A,Z)  (A,Z+2) + 2e-

mee = |iUei ²mi |

Effective neutrino mass:

  • Majorana nature, Mass scale, Majorana CP phases


H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorets, I.V. Krivosheina, NIM A, 2004

Evidence for neutrinoless Double-beta Decay ?

  • Wanted: New experiments !

  • GERDA ( 76Ge)

  • Cuoricino (130Te in cryogenic detectors)

  • NEMO (different isotopes in large drift-chambers)

  • COBRA (116Cd)

  • SNO+ (150Nd)

  • …and many more projects

Peak at 2039 keV in the Heidelberg-Moscow experiment !

Effect or background ??


Ger manium d etector a rray
GER Krivosheina, NIM A, 2004manium Detector Array

Method:

HP Ge-diodes

(enriched in 76Ge) in cryogenic fluid shield(optional active) .

Qββ= 2039 keV

Phase I: 20kg enriched (86%) 76Ge, vgl. HDMPhase II: 35-40kgPhase III: ~500kg


Gerda sensitivity neutrino mass

H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorets, I.V. Krivosheina, NIM A, 2004

| mee| in eV

Phase I:

Lightest neutrino (m1) in eV

Phase II:

Phase III:

GERDA Sensitivity & Neutrino Mass

F.Feruglio, A. Strumia, F. Vissani, NPB 659


Neutrinos as probes

Neutrinos as Probes Krivosheina, NIM A, 2004

…from the Earth and from Astrophysical Objects


Geo neutrinos
Geo-Neutrinos Krivosheina, NIM A, 2004

  • Direct neutrino observation:

  • what is the contribution of radioactivity to the Earth‘s heat flow (~ 40 TW) ?

  • direct test of the Bulk Silicate Earth model

  • what is the energy source of the Earth magnetic field ?

  • test of unorthodox models (i.e. breeder reactor in the core)


First detection in KamLAND Krivosheina, NIM A, 2004

reactors

reactors

Geo-neutrino energy spectrum

background

Excess due to Geo-neutrinos

Nature, 28. July 2005


Future neutrino observatories
Future Neutrino Observatories Krivosheina, NIM A, 2004

Unsegmented 50 kt liquid scintillator LENA

…Liquid Argon ~100 kt TPC

HyperKamiokande (1 Mt Water Cherenkov)


Laguna
LAGUNA Krivosheina, NIM A, 2004

  • Large Aparatus for Grand Unification and Neutrino Astronomy

  • European initiative (France, Germany, Italy, Switzerland, UK, Poland, Finland)

  • Aim: Design studies for all 3 kinds of detevtors (water Ch, scintillator, liquid argon) until ~ 2010


Physics goals of future neutrino observatories
Physics goals of future Neutrino Observatories Krivosheina, NIM A, 2004

  • Gravitational collapse

  • Star formation rate in the early universe

  • Thermonuclear fusion reactions

  • Baryon number violation (Proton decay)

  • Leptonic CP – violation

  • Geophysics

  • Indirect search for Dark Matter

  • Active Galactic Nuclei – UHE Neutrinos


One example for lena detection of the diffuse supernova neutrino background dsnb
One example for LENA: Detection of the Diffuse Supernova Neutrino Background (DSNB) ?

  • up to now only limits

  • flux and spectral shape depend on

  • Star formation rate

  • Gravitational collapse model


Star formation rate Neutrino Background (DSNB) ?

Star formation: Large uncertainties

Optical and infrared observations

LENA: 70 until 120 events in 10 years

1 < z < 2: around 25%

Pulse shape analysis: distinction between models of supernova mechanism


Extremely large observatories
Extremely Large Observatories Neutrino Background (DSNB) ?

Km3 Cherenkov detector in the mediterranian sea

Km3 Cherenkov detector at the South Pole (Ice Cube)


Diffusive sources Neutrino Background (DSNB) ?

= 2

= 00-03 combined

Atmospheric neutrino

Waxmann-Bahcall limit:

Model-independent upper bound

Eν E-3.8

Limits from Amanda

Frejus

Amanda

A change in the slope would indicate

a non-atmospheric component

Ice-Cube ~ 3 10-9


Conclusions
Conclusions Neutrino Background (DSNB) ?

  • New results recently

  • Neutrino masses and mixing established

  • Physics beyond the standard model

  • New window to astrophysical observations


ad