1 / 41

Recent results from B factories

Recent results from B factories. A. Oyanguren IFIC, UV-CSIC. III Jornadas CPAN, Barcelona 2 nd – 4 th Nov. 2011. Outline.  B factories (Belle & BaBar ).  Leptonic decays : B, D s    .  Semileptonic decays : BD*, V ub , charm.  CPV (B, c and  decays ) .

mili
Download Presentation

Recent results from B factories

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Recent results from B factories A. Oyanguren IFIC, UV-CSIC III Jornadas CPAN, Barcelona 2nd – 4th Nov. 2011

  2. Outline • B factories (Belle & BaBar) • Leptonicdecays: B, Ds • Semileptonicdecays: BD*, Vub, charm • CPV (B, c and  decays) • Raredecays: Bs, BK, B, B, D, Xch • Plans at SuperFlavourFactories (Belle II & SuperB) III Jornadas CPAN, Barcelona 2 A. Oyanguren

  3. B e+ e- z~ c  B ~ 200m B B factories KEKB √s=10.58 GeV Υ(4s) Υ(4s) BaBarp(e-)=9 GeV p(e+)=3.1 GeV=0.56 Bellep(e-)=8 GeV p(e+)=3.5 GeV =0.42 III Jornadas CPAN, Barcelona 3 A. Oyanguren

  4. B factories In addition to (4S)also large samples of other (nS) decays! # of produced (nS) Fantastic performance far beyond design values! III Jornadas CPAN, Barcelona 4 A. Oyanguren

  5. Leptonic decays Motivation: • Weakannihilationprocesses (helicitysuppressed) • sensitiveto New Physicseffects • B   : a chargedHiggscouldenhancethe SM • branchingfraction: Fromsemileptonicdecays: by: |Vub|=(3.89 ± 0.44) x 10-3 [PDG 2010] FromLattice QCD calculations: fB = 191 ± 3 ± 13 MeV [Lenz et al., PRD 83, 036004 (2011)] 0 = radiative correction ~1%) III Jornadas CPAN, Barcelona 5 A. Oyanguren

  6. Leptonic decays Experimental method: Reconstruct one B meson in hadronic BD(*)X or B   J/X decays (tag ~1%) Look for signal in the recoil: using kinematical and event shape information  Look for extra energy Eextra = sum of neutral clusters in the ECM calorimeter  Study Extra using double tag events to control the bkg.  Extract B from unbinned max. likelihhod fit To Eextra: 426 fb-1 3.3 significance BaBar combined: Belle: III Jornadas CPAN, Barcelona 6 A. Oyanguren

  7. Leptonic decays Final measurement of sin2 sin2 from CP measurements in B0→ cc K0 Belle, preliminary, 710 fb-1 Tension between B(B→) and sin2 (~2.5) remains III Jornadas CPAN, Barcelona 7 A. Oyanguren

  8. Leptonic decays Ds   can alsobeenhancedby a chargedHiggsorleptoquarks: fDscalculatedby LQCD withsmall error fDs= (248.6 ± 2.5) MeV  At BaBarDs  e, , measuredfromfully reconstructedeventsusingtherecoilmass and theEextra BaBar Agreementwiththeory 521fb-1 [PRD RC 82, 091103 (2010)] III Jornadas CPAN, Barcelona 8 A. Oyanguren

  9. Semileptonic: B  D(*) Motivation: • Sensitivetocharged-Higgseffects • Involveformfactorswhich can bemeasured in BD(*)e/ decays • Observables: R(D) and R(D*) ratios • - can beenhancedbythecharged-Higgs (tan/mH) • - severalsyst. and theo. uncertainties cancel out SM predictions: R(D) = 0.31  0.02 R(D*) = 0.25  0.02 [Nierste, Trine, Westhoff PRD78 (08) 015066] III Jornadas CPAN, Barcelona 9 A. Oyanguren

  10. Semileptonic: B  D(*) •  • ee Experimental method: • BaBar: Btagfullyreconstructedintohadrons (Improvedefficiencies (lepton and Btag)) • Bsig: D(*) and lepton (, e) • - 4 signalsamples: (D0, D+, D*0, D*+) • (toextract BD(*)) mmiss2 = (pe+e- -pBtag-pD(*)-p)2 426 fb-1 • - 4 control samples: (D0, D+, D*0, D*+)0 • (to derive D** bkg) • 2D unbinned ML fit mmiss2-p*(3x4 par.) • Yieldsfor: • B (D0, D+, D*0, D*+) • B (D0, D+, D*0, D*+) • B (D0, D+, D*0, D*+)0 R(D) and R(D*) Largesignalsignificance (>5) forallchannels III Jornadas CPAN, Barcelona 10 A. Oyanguren

  11. Semileptonic: B  D(*) SM predictions: R(D) = 0.31  0.02 R(D*) = 0.25  0.02 Results (preliminary): R(D) = 0.456  0.053  0.056 R(D*)= 0.325  0.023  0.027 SM 1.8 largerthan SM prediction  favorslarge tan Comparisonwithpreviousresults: (w/o 2011) (w/o 2011) III Jornadas CPAN, Barcelona 11 A. Oyanguren

  12. Semileptonic: Vub Motivation: • Charmlesssemileptonicdecaysallowusto • measureVub(upper UT vertex) • Challenge: suppresscharmbackground BX = BXc + BXu (50 : 1) BX BXu • Twodifferent experimental methods: • - Inclusive:highstat. butmuchbkg: use kinematiccuts: • Theory:Shapefunctionfrom QCD • - Exclusive:final meson (,,…): lowstat. butbetterbkgrejection. • Theory: Formfactorsfrom QCD El, q2, MX and P+ = EX -|pX| III Jornadas CPAN, Barcelona 12 A. Oyanguren

  13. Semileptonic: B  Xu Signal side Experimental Method: Tagside • At BaBar, Btagfullyreconstructedhadronically • ( ~0.3-0.5%) +  or e fromtheBsig (4S) • Xufromallremainingtracks and neutral clusters •  estimatedfrommissing E and p • Bkgsupression: • 426 fb-1 • - CombinatorialsubtractedfrommES • - Charm: B  D* partialreconstructed • kaon veto, only 1leptonp* > 1 GeV • Several PS regions, 2D fitfor B(BXu)/B(BX ) in q2-Mx for p* > 1GeV BaBar - K+  BXc bkg and BXu signalyields B(BXu)=1.80 (13) (15) x 10-4 lepton D0 B0 - Vubextraction: B0 Average: BNLP: [Bosch et al. , PRD 72 (05) 073006]  + DGE: [Andersen et al. , JHEP 0601 (06) 097] |Vub|= (4.31 0.25exp  0.16theo )10-3 GGOU: [Gambino et al., JHEP 0710 (07) 058] Xu [tobesubmittedto PRD] ADFR: [Aglietti et al., EPJ. C 59 (09) 831] III Jornadas CPAN, Barcelona 13 A. Oyanguren

  14. Semileptonic: B   • The exclusive B semileptonicdecayrateisdescribed as function of formfactors: = p, h, h’, r, w • QCD calculations: Lattice data III Jornadas CPAN, Barcelona 14 A. Oyanguren

  15. Semileptonic: B   PRD 83 (2011) 032007 • BaBar, untaggedanalyses PRD 83 (2011) 052011 Loose  reconstructionfromfull event FittoBaBar + Belle + LQCD Backgroundsuppressionbycutsor Neural Net  FitusingE= (PBPbeams-– s /2)/2 , mES= [(s/2 + pBpbeams- )2 /E2beams - p2B] and q2= (p + p)2 = (pB- p)2 (in 12 or 6 bins) B(Be)=1.42 (5) (7) x 10-4 BaBar: B (Be) =1.41 (5) (7) x 10-4 |Vub| = (3.19 ± 0.14 ± 0.27) x10-3 Belle: B (Be) =1.49 (4) (7) x 10-4 • (V. Luth, J. Dingfelder) [arXiv:1012:0090] III Jornadas CPAN, Barcelona 15 A. Oyanguren

  16. Semileptonic: Vub • Exclusive: |Vub| = (3.19 ± 0.14 ± 0.27) x 10-3 • (V. Luth, J. Dingfelder) • Inclusive: |Vub| = (4.34 ± 0.13 ± 0.15) x 10-3 (V. Luth, [NS61CH06-Luth]) Inclusive |Vub| Exclusive |Vub| >2 differencesincemanyyearsago and Vub from B  largerthan forB  New Physicscontribution? (RH currentsmodification) III Jornadas CPAN, Barcelona A. Oyanguren

  17. Semileptonic: charm • Charmsemileptonicdecaysallowtomeasureformfactors in thecharm sector, validating LQCD methods •  increasetheoryprecisioninvolving B decays •  trust LQCD calculationsensuringpossible New Physicssigns Example: the leptonicconstantfDs: >3 !?! fDspuzzle: exp theo contribution from a chargedHiggs? Kronfeldplot, N. Simone: FERMILAB-CONF-10-594-T • Severalcharmsemileptonicchannelshavebeenstudied at BaBarfrome+e-  cc • using a partialreconstructiontechnique: DKe , DsKKe,D+Ke published De (soon)  can berelatedto Be  accesstoVub III Jornadas CPAN, Barcelona 17 A. Oyanguren

  18. Semileptonic: charm • Quite precise form factor measurementsfromBaBar need LQCD improvements [PRD 78, 051101(R) (2008)] [PRD 76, 052005 (2007)] BaBar BaBar 214 fb-1 fK+(q2) BaBar 75 fb-1 Dsen Dsen D0K-e+n [PRD 83, 072001 (2011)] BaBar Experiments BaBar D+K*e+n BaBar 348 fb-1 D+K*e+n D+K*e+n A1(q2), A2(q2), V(q2) r2=A2(0)/A1(0) • rv=V(0)/A1(0) III Jornadas CPAN, Barcelona 18 A. Oyanguren

  19. CP Violation The CKM matrix Motivation: • • CP violation discovered ~50 years ago • observing the decay KL → π+π- • • In the SM CPV arises from the not vanishing • phase of the CKM matrix • • New Physics can induce additional FCNC • and CP-violating phases • • Many observations of CPV processes in the • last decade in the beauty and strange sectors •  Global consistency with SM predictions • • No observation yet of CPV effects in the • charm sector • • No observation yet of CPV effects in the • lepton sector 19 A. Oyanguren III Jornadas CPAN, Barcelona

  20. CP Violation in D decays Motivation:  Direct CP violation in D decays arises through interference between: Vcs  In the SM is CKM suppressed O(10-3) or less:  New Physics can increase or reduce the effect: - e.g. additional CP phase from charged Higgs boson  SCS decays are more likely to show the effect if present [PRD 75, 036008 (2007)] [hep-ph/0104008 (2001)]  Current experimental sensitivity O(10-3) [PRD 51, 003478 (1995)] 20 A. Oyanguren III Jornadas CPAN, Barcelona

  21. CP Violation in D decays Experimental method:  Due to CPV in mixing in the kaon sector, the direct CP asymmetry for D+Ks+  At BaBar: signal yields from likelihood fit to m(+K0s), with selection based on a Boosted Decision Tree with 7 variables:  807K D±signal events  Measure • is expected to be [hep-ph/0104008 (2001)] Forward-Backward asymmetry Detector charge asymmetry •  Data-driven method to correct for A • Use tracks from e+e-(4S)BB decays (isotropic in rest frame) to map the ratio of +/- detection efficiencies • Offset on ACP  +0.05% 21 A. Oyanguren III Jornadas CPAN, Barcelona

  22. CP Violation in D decays •  Use data-driven method to extract AFB, and ACP in bins of polar angle D+Ks+ [PRD 83, 071103(R) (2011)] Consistent with SM (-0.332±0.006)%  At Belle D0 KS0, tag D flavour with the D* decay ACP = -0.28  0.19  0.10 [PRL106, 211801 (2011)] 22 A. Oyanguren III Jornadas CPAN, Barcelona

  23. CP Violation in Ks t- nt Motivation:  CP violationnotyetobserved in thelepton sector u W-  A deviation of the measured ACPfrom ACPSM would be a hint of New Physics • e.g. an additional CP violating phase from an exotic charged Higgs boson Can consider --Ks(>=00)since0s are not expected to change the asymmetry p-  Searchfordirect CP violation in tau decays: --Ks d  within the SM, due to the Ks presence, the asymmetry: Tree s d K0 • is expected to be [Bigi and Sanda, PLB 625, 47 (2005)] • (same argument than for DKs decays) [PLB 398, 407 (1997)] 23 A. Oyanguren III Jornadas CPAN, Barcelona

  24. CP Violation in Ks Experimental method:  Reconstruct from continuum --Ks(>=00) (up to 30s) •  Electron and muon tags with p* > 4 GeV • (reduce bkg from non--pairs)  Reconstructed hadronic mass < 1.8 GeV (rejects qqbkg) •  Remaining background further reduced using information of: • qq events: visible energy, number of neutral clusters, thrust, total transverse momentum •  Fake K0s: displaced vertex, invariant mass, momentum and polar angle of the K0s candidate Invariant mass of the hadronic final state (00s) 340k events 24 A. Oyanguren III Jornadas CPAN, Barcelona

  25. CP Violation in Ks Experimental method:  Measured raw ACP value (after subtraction of qq background and non-K0s decays) has to be corrected by: • Different nuclear reaction cross-section of K0 and K0 with material detector • (0.14±0.03)% for e-tag, (0.14±0.02)% for -tag • Errors include uncertainties from kaon-nucleon cross-sections and isospin • Dilution from background modes including K0s  Result: [Preliminary, submittedto PRD-RC arXiv:1109.1527] Systematic uncertainties 3 from the SM prediction 25 A. Oyanguren III Jornadas CPAN, Barcelona

  26. CP Violation in Bc decays Motivation: •  Many such decays are dominated by bs penguins • Tree amplitudes subdominant in SM • Time-dependence and FSI (intermediate states) allow to measure the CKM angles •  New Physics can change CP asymmetries, BRs and polarizations in BVV decays •  Use kinematic constraints from beam energies •  Event shape variables combined into a linear (Fisher) or non linear (NN) combination. Tagging (other “B”) information often used Tree Experimental method: Penguin • Apply selection to reject continuum • asvariable in ML fit 26 A. Oyanguren III Jornadas CPAN, Barcelona

  27. CP Violation in Bc decays  Direct CP violation difference in B K+-and K+0 at Belle DAKp= ACP(Kp0) - ACP (Kp) Update the 2008 result with the full data set and improved reconstruction - ~2x more data preliminary 772 M BB Belle preliminary: AK= +0.112 ± 0.028 @4 27 A. Oyanguren III Jornadas CPAN, Barcelona

  28. CP Violation in Bc decays  Direct CP violation difference in B0 K+-0 and B+K+00at BaBar •  Perform ML fit with mES and NN, and for K+-0 only, also E and Dalitz plot •  For B0K+-0 • BF(B0K+-0) = (38.5 ± 1.0 ± 3.9)10-6 • ACP(K*+-) = -0.29 ± 0.11 ± 0.02 • When combined with B0Ks+- : •  For B+K+00 • First inclusive measurement • Measure resonances • in a two-body fashion • 10  significance 454x106 BB pairs [PRD 83, 112010 (2011)] 3.1 evidence for direct CPV • ACP(K*+-) = -0.24 ± 0.07 ± 0.02 471x106 BB pairs • ACP(K*+0) = -0.06 ± 0.24 ± 0.04 Preliminary 28 A. Oyanguren III Jornadas CPAN, Barcelona

  29. Rare decays •  Rare processes are quite sensitiveto New Physicseffects •  B: Belle:fullyrecotag + nothing in thesignalside BR< 1.3 x 10-4 @ 90% CL (BaBar: BR< 2.2 x 10-4 ) •  BK: BaBar: semileptonictag + K and 2 in • thesignalside[PRD 82, 112002 (2010)]  B(s+d): BaBar: semileptonictag + 1  in the signalside: ACP = 0.056 ± 0.060 ± 0.018 (SM) x10-5  B: BaBar:upper limit (UL) lowered by a factor 2: BR< 3.2 x 10-7 @ 90% CL •  D: BaBar: BR< 2.4 x 10-6 @ 90% CL B: D • Most of LFV and LNV Xchll BF ULs down by 1 order of magnitude (10-6) 29 A. Oyanguren III Jornadas CPAN, Barcelona

  30. Future: SuperB, Belle-II  Two new facilitiesaimingtoanintegratedluminosity of 50-75ab-1around 2020 SuperB, Frascati (Italy) Belle-II, Tsukuba (Japan)  Approved, build a new tunnel, upgrade PEP-II and BaBar, quickly ramping up  Approved, major upgrade at KEK in 2010-14 SuperKEKB+Belle II, construction started Physics: Sensitivity B() ~ 10-9, B()~10-10,B(h)~10-10 CharmPhysics: Precision CP parameters: (K) (~10-5), sensitivity FCNC: D(h) (~10-8) B Physics: Precision BK (~20%), B (~ 4%), B (~ 5%), BD (~ 2%), ACP(bs) (~ 0.002), Vub (~ 2%) 30 A. Oyanguren III Jornadas CPAN, Barcelona

  31. Summary 31 A. Oyanguren III Jornadas CPAN, Barcelona

  32. Summary • B  D(*) Improvedmeasurements at BaBar BD0 and BD+ more than 5 significance • R(D(*)) exceedby 1.8  the SM valuesfavorslarge tan |Vub| excl. = (3.19 ± 0.14 ± 0.27) x 10-3 • Vub |Vub| incl. = (4.34 ± 0.13 ± 0.15) x 10-3 Despitethe experimental and theoreticaleffortsthediscrepancy between exclusive and inclusive measurementsremains: whatdoesitmeans? whatdon’tweunderstand? • CharmSemileptonicformfactors Quite precise resultsfromBaBarforDKe, Ds e, D K*e, formfactorsallowtocheck QCD methods: need LQCD improvements III Jornadas CPAN, Barcelona 32 A. Oyanguren

  33. Introduction B and charmsemileptonicdecays are treelevelprocesses involving CKM matrixelements: VudVusVub VcdVcsVcb VtdVtsVtb 0.00389(44) VCKM= 0.0406(13) PDG10 0.230(11) 1.023(36) New Physicscontributions can onlybeseen: coupling ~ mbmtan2  in semileptonicdecaysinvolving leptons:  B D()  bycomparing CKM matrixelements in leptonicand semileptonicdecays  Vub: Inclusive B Xu , exclusive B  Note: Must control (bymeasuring) QCD effects (formfactors)  Charmsemileptonicdecays III Jornadas CPAN, Barcelona 33 A. Oyanguren

  34. Charm sl decays Analysisprocedure: • Partialreconstructionmethod; e+e-  cc; onlyelectrons • D* tag in case of DKe, no tagforDsor D+decays • Compute the D(s)directionfromalltracks  signaltracks • q2 and angular distributions: kinematicfitwithsignal • tracksmomenta and missingenergyinformation • Backgroundsuppressionusingeventshape and • topological variables • Background control, test of theanalysistechnique and thenormalization are obtainedfromhadronic data samples (ex: DK, D K) III Jornadas CPAN, Barcelona 34 A. Oyanguren

  35. Semileptonic: B  D(*) Fitresults(preliminary): (isospin) (isospin) • largesignalsignificance (> 5) • forallchannels Systematics(preliminary): - Selectioncuts: ~6%(D*),~9%(D) - D** fitted in D(*)0 samples: ~4%(D*), ~5%(D) III Jornadas CPAN, Barcelona 35 A. Oyanguren

  36. B  Xu Summary of Vubmeasurements: |Vub| = (3.19 ± 0.14 ± 0.27) x10-3 • Exclusive: (V. Luth, J. Dingfelder) • Inclusive: |Vub| = (4.34 ± 0.13 ± 0.15) x 10-3 (V. Luth, [NS61CH06-Luth]) III Jornadas CPAN, Barcelona 36 A. Oyanguren

  37. Leptonic decays III Jornadas CPAN, Barcelona 37 A. Oyanguren

  38. Vub exclusive: BaBar combined • Small eventoverlap of B0- (<1%) BaBarcombinedresult: • Uncorrelatedstatisticaluncertainties • Highlycorrelatedsystematics BaBarFitto BGL Lattice LCSR BaBarfitto BGL includingLattice data points (B : LCSR q2 < 12GeV2, LQCD q2 > 16GeV2) (fitsfromJ.Dingfelder and V. Luth) III Jornadas CPAN, Barcelona 38 A. Oyanguren

  39. Vub exclusive: B   PRD 83 (2011) 052011 Analysesprocedure: PRD 83 (2011) 032007 BaBar data samples: 423 fb-1 , 349 fb-1 • Untaggedanalyses (highstat., more bkg.), e +  Loose  reconstructionfrom full event(p = pbeams- pi) Backgroundsuppressionbycutsor NN  2D or 3D fit E = (PBPbeams-– s /2)/2 , mES= [(s/2 + pBpbeams- )2 /E2beams - p2B]½ q2 = (p + p)2 = (pB- p)2 toextractthesignalyield • q2 in 12 or 6 bins III Jornadas CPAN, Barcelona 39 A. Oyanguren

  40. Charm sl decays Analysisprocedure: • Partialreconstructionmethod; e+e-  cc; onlyelectrons • D* tag in case of DKe, no tagforDsor D+decays • Compute the D(s)directionfromalltracks  signaltracks • q2 and angular distributions: kinematicfitwithsignal • tracksmomenta and missingenergyinformation • Backgroundsuppressionusingeventshape and • topological variables • Background control, test of theanalysistechnique and thenormalization are obtainedfromhadronic data samples (ex: DK, D K) III Jornadas CPAN, Barcelona 40 A. Oyanguren

  41. [tobesubmittedto PRD] data Xu Xc B Xu 1441  102 Fitresults: • Most precise result : 2D fit q2-Mx • for p* > 1 GeV • FitforBXc bkg and BXu • signalyields B Xu B Xu Vubextraction: Average: |Vub|= (4.31 0.25exp  0.16theo )10-3 BNLP: [Bosch et al. , PRD 72 (05) 073006] DGE: [Andersen et al. , JHEP 0601 (06) 097] GGOU: [Gambino et al., JHEP 0710 (07) 058] ADFR: [Aglietti et al., EPJ. C 59 (09) 831] III Jornadas CPAN, Barcelona 41 A. Oyanguren

More Related