1 / 36

IBL – Stato del Progetto, Attività e Richieste

IBL – Stato del Progetto, Attività e Richieste. Roma, July 23 rd , 2009 G. Darbo - INFN / Genova. Draft 1. Agenda Page:. PROJECT STATUS. IBL Status. Project formally started: Project Leader endorsed by CB (Feb 2009) IBL Management Board – Endorsed by ATLAS Executive Board (April 2009)

michi
Download Presentation

IBL – Stato del Progetto, Attività e Richieste

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IBL – Stato del Progetto,Attività e Richieste Roma, July 23rd, 2009 G. Darbo - INFN / Genova Draft 1 Agenda Page:

  2. PROJECT STATUS

  3. IBL Status • Project formally started: • Project Leader endorsed by CB (Feb 2009) • IBL Management Board – Endorsed by ATLAS Executive Board (April 2009) • IBL (Institute Board) Kick-off meeting – July 8th • To converge towards a MoU for the IBL project • TDR • Editor (K. Einsweiller) and Chapter Editors selected – Final version April 2009. • Guide line for project schedule (ATLAS UPO – 21/7/2009) • target the installation for the second half of 2014. (shutdown 2014/15) • assume an 8 months shutdown time for the IBL installation • decouple the IBL installation from the LHC phase 1 upgrade (!) • Last IBL General Meeting June 25th & 26th • 42 talks – 2 full day technical discussion • Whole project covered including software • http://indico.cern.ch/conferenceDisplay.py?confId=54685 Institutes Present at the IBL kick-off

  4. IBL Project & Organization • The IBL (Insertable B-Layer) is an ATLAS Upgrade project: • It will deliver a fourth pixel layer, including a new beam-pipe, to the Inner Detector • When delivered, it will become a part of the Pixel Detector and of the Inner Detector and the organization will be “absorbed” into the Pixel & ID • The organization structure has: • IBL MB: Management Board to execute the project • IBL IB: Institute Board, is an extension of the existing Pixel IB Pixel Institutes in IBL New Institutes in IBL ATLAS UPO ATLAS UPGRADE IBL MB (Management Board) IBL IB (Institute Board) IBL PL IBL TC IBL Module WG Stave WG I&I WG Off-det WG

  5. Management Board (MB) • Ad-interim membership • IBL Project Leader: G. Darbo • IBL Technical Coordinator: H. Pernegger • “Module” WG (2 Physicists): F. Hügging & M. Garcia-Sciveres • “Stave” WG (1 Phy. + 1 M.E.): O. Rohne + D. Giugni • “IBL Assembly & Installation” WG (2 M.E. initially, a Phy. Later): N. Hartman + R. Vuillermet • “Off-detector” WG (1 Phy. + 1 E.E.): T. Flick + S. Débieux • “Extra” members: • Ex officio: Upgrade Coordinator (N. Hessey), PO Chair (M. Nessi), Pixel PL (B. Di Girolamo), ID PL (P. Wells), Pixel Chair (C. Gößling) • Offline “liaison” Pixel Off-line coordinator: A. Andreazza • TDR editor (temporary): K. Einsweiler • IBL Management Board • Membership: • IBL PL + IBL TC • 2 coordinators from each WG • Plus “extra” members • Module WG • (2 coordinators) • FE-I4 • Sensors • Bump-Bonding • Modules • Test & QC • Irradiation • Stave WG • (1 Phys + 1 Eng.) • Staves • Cooling Design & Stave Thermal Management • HDI • Internal Services • Loaded Stave • Test & QC • IBL Integr.-Install. • (2 Eng.) • Stave Integration • Global Sup. • Beam Pipe (BP) • Ext.services inst. • IBL+BP Installation • Cooling Plant • Test & QC • Off-detector • (1 Phys + 1 E.Eng.) • Power • DCS • ROD • Opto-link • Ext.serv.design/proc. • Test Beam • System Test

  6. For more information – CSN1 November ’08 & March ’09 TECHNICAL OVERVIEW

  7. Requirements for Sensors/Electronics • Requirements for IBL • IBL design Peak Luminosity = 3x1034 cm-2s-1 New FE-I4, higher hit rate • Integrated Luminosity seen by IBL = 550 fb-1 • Total NIEL dose = 2.4 x 1015 ± 30% (σpp) ± 50% (damage factor) = 4.7 x 1015 neq/cm2 more rad-hard sensors • Total radiation dose > 200 Mrad • Fit made for 2 < r < 20 cm for L=1000fb-1 • Gives for IBL @ 3.7 cm (550 fb-1): • Φ1MeV=2.4x1015 (1.2 MGy) • Safety factors not included in the computation (pp event generator: 30%, damage factor for 1 MeV fluences: 50%) Ref. Ian Dawson - AUW

  8. Predominant Stave Layouts • Several layouts under study: 14 staves at Rmin=~3.2 cm • Single and double staves – One or two (redundant) cooling channels Sensor Sensor Biturbine Inverted • Ref: N. Hartman: • http://indico.cern.ch/conferenceDisplay.py?confId=43496

  9. IBL Installation: Beam Pipe Extraction • The beam pipe flange on A-side is to close to the B-layer envelope . Need to be cut on the aluminum section • A structural pipe is inserted inside the Beam Pipe and supported at both sides. • The support collar at PP0 A-side is disassembled and extracted with wires at PP1. • Beam pipe is extracted from the C-side and it pulls the wire at PP1 • New cable supports are inserted inside PST at PP0. • A support carbon tube is pushed inside the PST along the structural pipe. C-side A-side Started to setup a 1:1 mock-up of Pixel/beampipe/PP1 in Bat 180

  10. IBL Installation Scenario I • The support carbon tube is fixed in 2 point of PP0 and on PP1 walls on side C and A. • The structural pipe with a support system is moved out from the support carbon tube. • The new beam pipe (in any configuration with OD up to 82,5 mm) is inserted from C-side. It has 2 supports at PP0 area and 2 floating wall at PP1 on side A and C.

  11. Module Layout - Convergence • Decision between Planar and 3D sensors will be done after TDR • Need module prototypes with FE-I4 (second half 2010) • Common sensor baseline for engineering and system purposes • 3D sensors – single chip modules / Planar sensors – 2 chip modules • Sensor/module prototypes for ~10% of the detector in 2010 • Stave prototype tested with modules and cooling Credits: M.Garcia-Sciveres – F. Hügging

  12. FE-I4 Status • FE-I4 Status • Prototype blocks in MPW (MOSIS) submitted 3/2008, measurements, irradiation • Design review (3/2009): “system & design issue” on full scale design • FE-I4 Design Collaboration Meeting - July 1st & 2nd ‘09 • Pre-submission design review –end of Sept./Oct. • Submission ~ 1month later

  13. Test Beam (June ‘09) – FBK 3D Sensors • Comparison of 3D and Planar • Test beam with magnetic field • Planar sensors are sensitive to Lorentz angle: maximize charge at incidence angle = Lorentz angle • 3D (electric field parallel to sensor surface) are not. • Active edge: ~5 to ~10 µm from edge (see picture at the right) 3D FBK ToT at 15o 3200e- planar

  14. INFN ACTIVITY 2009/10

  15. BO (GE) : Attività 2010 (ROD) Pix ROD 2009 • BO new entry in “Pixel World” • Expertise in complex digital architecture • Design and production of new ROD – in collaboration with GE (P. Morettini) Pix ROD Update FPGA/DSP Genova e-BOC BOC 2010 Bologna IBL ROD New Board Port FPGA/DSP code Test System Module/Stave/Test Beam 2011 Upgraded Test System Proto System Test (Use for Stave Test?) IBL ROD Dev Development System for IBL ROD 2012 System Test 2013 IBL R/O

  16. GE : Attività 2009 • Sensori 3D • Sono una dei tipi si sensori che potrebbero essere gia’ usati per l’IBL e, in futuro, per il tracciatore di ATLAS per sLHC. • Sensori prodotti all’IRST Trento, bump-bondati all’AMS con FEI3, assemblaggio e test in Genova. • Risultati incoraggianti sia dai test di laboratorio che al test beam. • Progettazioni servizi interni • Disegno dei servizi a PP0 (dall’elettronica di Front end alla fine dello stave) • Forti constraint imposti dalla minimizzazione del X0, dall’elettronica (caduta di potenziale), procedure di assemblaggio. Noise Misura della carica rilasciata al test beam TOT

  17. GE : Attività 2009 • Sensori 3D • Sono una dei tipi si sensori che potrebbero essere gia’ usati per l’IBL e, in futuro, per il tracciatore di ATLAS per sLHC. • Sensori prodotti all’IRST Trento, bump-bondati all’AMS con FEI3, assemblaggio e test in Genova. • Risultati incoraggianti sia dai test di laboratorio che al test beam. • Progettazioni servizi interni • Disegno dei servizi a PP0 (dall’elettronica di Front end alla fine dello stave) • Forti constraint imposti dalla minimizzazione del X0, dall’elettronica (caduta di potenziale), procedure di assemblaggio. Junction Bus-Pigtail 1.11 Bus FE/module Pigtail LV1 LV2 LV3 LV4 GND1 GND2 GND3 GND4 Wire-Bondings FE- Pigtail Signals for mod1 Signals for mod2 Signals for mod3 Signals for mod4

  18. GE : Attività 2010 • Sensori 3D • Continua la stretta collaborazione con l’IRST testando i sensori da loro prodotti e dando feedback. • Bump Bonding all’AMS, Assemblaggi e test in laboratorio • Test beam al Cern • irraggiamento • Produzione prototipi flex bus e pigtail • Prima prototipaggio al CERN • Test elettrici, in particolare propagazione dei segnali – 160 Mbits per 7m) • Studio e test: • Incollaggio sul supporto meccanico del bus (critico per il CTE) • Incollaggio dei pigtail sui moduli (critico per il wire bonding) • Giunzione dei pigtail al flex • FEI4 • Sviluppo del chip • Test setup per test delle nuove device • Integrazione con la DAQ (ROD/BOC, software) • Supporto in lavorazione stave (in collaborazione con Mi)

  19. MI : Attività 2009 • Design e produzione prototipi carbon pipes per stave “omogeneo”. • Gestione della produzione prototipi CF pipe (Stoccarda) [produzione in Sezione tooling, facilities, dwgs] • Qualifica a pressione e leak-rate • Simulazione per il calcolo: • della figura di merito dello stave • del thermal run-away. • Del CTE della pipe e della resistenza strutturale • Misura della conduttivita trasversa del laminato della pipe. • Sviluppo connessione CF/Ti per cooling Pipe.

  20. MI : Attività 2010 • PP2 boxes con relativo re-design delle regulator-boards. • Il progetto IBL prevede l’utilizzo di un nuovo chip in tecnologia 0.13mm (FEI4) e quindi con diversi valori di tensione e corrente • Studio delle modifiche da apportare alle LV regulation station, in particolare con re-design delle boards di connessione per minimizzare Vdrop lungo le linee di alimentazione • Verifica resistenza alla crescita di micro-cricche nella matrice del laminato della pipe sotto tensione e dopo irraggiamento [reattore PV]. • Cooling [supporto di personale e setups di test] • Qualifica della CF pipe e stave su sistema evaporativo a C3F8 (o blends) o CO2 • Verifica transitori termici e max T build-up su sensori durante il bake-out della beam pipe

  21. TN/UD/FBK (GE) : Attività 2009 • Full 3D detectors (passing through columns) with slim edge are proposed • Double-side technology approach, already proved on test structures of 250 mm thickness. • One batch with FE-I3 ATLAS single chips is currently being fabricated 250 mm

  22. FBK : Slim Edge • From TCAD simulations, a 170 mm distance between active area and saw cut is feasible. • With this structure, a steep increase in the current due to edge contribution takes place at Vrev ~ 200V (well beyond operation voltage) • Post irradiation, edge current is not an issue Saw cut

  23. UD : Simulazioni TCAD • Numerosi processi (anche su farmts) • Simulazioni 2D su sezioni orizzontali e verticali • incluse impiantazioni superficiali e p-spray • idonee per valutare l’insorgere del breakdown • distanza critica fra colonne e impiantazioni superficiali • carica deposta nell’ossido dalla radiazione incidente (QOX) • Simulazioni tridimensionali • utilizzate per stime di capacità

  24. UD (TN) : Attività 2010

  25. FINANCIAL

  26. Cost • What in prototype costs: • Sensors: Planar, 3D, Diamond (1) • Electronics: FE-I4 • Hybridisation: bump-bonding • Local supports: stave • Beam-pipe: mock-up • External cooling: Thermal management • What not: • All other electronics / mechanical prototypes • Irradiation and test beam (1) Diamond prototype added to cost - if diamond are the IBL sensors, the IBL cost will increase by > 1MCH.

  27. WBS - INFN INFN deliverables: 932kCH 17 % Not covered: 143 kCH Total : 1075 kCH 19 %

  28. Some “Envelopes” to Shape Participation • IBL Total Cost: 9.6 MCH • M&O-A: 4.0 MCH • M&O-B (for Countries with “pixel M&O-B” budget line – listed in the table): 4.4 MCH • CZ, F, D-BMBF, D-DESY, I, RZ, US, CERN • New project contributions: 1.2 MCH • CH, E, N, UK • IBL M&O-B: • There are not a-priory boundariesamongst Countries, but some reference can be considered fromthe old Pixel CORE to evaluate howcountries are consolidated in the“pixel technology” needed for IBL • MoU • Interim-MoU – i-MoU first version is expected to be available by the end of the year and should converge to final MoU with the writing of the TDR.

  29. INFN Contribution to IBL • INFN Contribution proposal: • Assigned for deliverables: 932 kCH (16.4%) + “not covered”: 143 kCH = 1075kCH (19 %) • M&O-A: frazione secondo regole ATLAS • Cost divided in deliverables + common orders (Sensor, FE-I4, bump-bonding) + cash + M&O-A

  30. BO : Richieste 2010

  31. GE : Richieste 2010

  32. MI : Richieste 2010

  33. UD (TN) : Richieste 2010

  34. BACKUP SLIDES

  35. 3D Sensors • Large collaboration • 15 Laboratories and 3 processing facilities Thickness 230±15 mm Module type single FE-I4 assembly #electrode 2 per 250mm Edge active 5mm Edges guard 200mm Signal (5x1015) ~12500 e- Bias (5x1015) ~150V Wcm-2( 5x1015) 33mW at -10oC Lorentz angle before irr. free Efficiency (3200 e-) 96% (0o) 99% (15o) Wafer dim. 4” Expected yield ~50% Bias bump-b and pad FBK & CNM SINTEF/Stanford Credits: C. Da Via on behalh of ATLAS 3D Sensor R&D

  36. Bologna - Activity • Schedule and estimation of resources for IBL ROD

More Related