1 / 20

Event Generator: Electron and electron-pair simulations for PHENIX using EXODUS and PYTHIA

Event Generator: Electron and electron-pair simulations for PHENIX using EXODUS and PYTHIA. Ralf Averbeck, State University of New York at Stony Brook, PHENIX Upgrade Workshop, Montauk 3/21 - 3/23 2001. Outline. Motivation The heart of the simulation package: EXODUS event generator

menefer
Download Presentation

Event Generator: Electron and electron-pair simulations for PHENIX using EXODUS and PYTHIA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Event Generator:Electron and electron-pair simulations for PHENIX using EXODUS and PYTHIA Ralf Averbeck, State University of New York at Stony Brook, PHENIX Upgrade Workshop, Montauk 3/21 - 3/23 2001

  2. Outline • Motivation • The heart of the simulation package: EXODUS • event generator • decay machine • acceptance filter • Proof of principle: CERES cocktail • Electrons in PHENIX (Au+Au @ 130 GeV): part I • Electrons from open charm • Can PYTHIA describe existing open-charm data? • PYTHIA extrapolated to RHIC • Electrons in PHENIX (Au+Au @ 130 GeV): part II • Summary R. Averbeck, SUNY SB

  3. Motivation • Simulation of • phase-space distributions of “all relevant” sources of electrons & electron pairs (or whatever particle species you prefer) • decays • acceptance • resolution • Valuable for: • acceptance studies (e.g. detector upgrades) • development of analysis strategies • “reference” for data (“cocktail” plots) • THE example: ”GENESIS” generator (CERES) G. Agakichiev at al.: Eur.Phys.Jour. C4(98)231 R. Averbeck, SUNY SB

  4. EXODUS: a “new” cocktail generator • standalone C++ package using ROOT classes • complete separation of particle generator, decay machine, acceptance filter, detector resolution => extremely flexible! cc bb DY p0, h, r, w, f p,K,p PYTHIA Particle generator Event Builder Events Ntuples ASCII Decay Machine Ntuples ASCII Experiment Filter Ntuples ASCII R. Averbeck, SUNY SB

  5. EXODUS: particle generator • particle: PID, (E;p), weight • standalone phenomenological generator: • p0, h, h’, r, w, f, J/y (p, K, p) • needed as input: • weight factor (relative to p0): measurement (or model) • phase space distributions (pt, y): measurement (or model) • mass distributions (r, w, f) • input distributions provided using “standard” parameterizations (ROOT histograms) R. Averbeck, SUNY SB

  6. G.J. Gounaris, J.J. Sakurai: (Phys.Rev.Lett. 21(1968)244 With: Resonance mass distributions (r, w, f) R. Averbeck, SUNY SB

  7. Phase space distributions and relative particle weights (Au+Au @ 130 GeV) Transverse momentum: Rapidity: • relative particle weights from thermal model (J.Stachel QM99): • p: 1 • h: 0.097 • h’: 0.0086 • r: 0.10 • w: 0.08 • f: 0.02 UA1 parametrization + mt-scaling • Alternative pt distributions: flat, exponential • Alternative y distribution: R. Averbeck, SUNY SB

  8. Decay machine • Task: first generation => full history (for each event) • Generic decay algorithms: Dalitz, 2- and 3-body decays • Individual decay channels can be activated/deactivated • Propagation of weight factors! • Only non-trivial decay: Dalitz R. Averbeck, SUNY SB

  9. with Dalitz Decays • Parent -> X + l+l- (masses: M, mx, ml) • Lepton pair mass: (N. Kroll, W.Wada: Phys. Rev. 98(1955)1355) • Electromagnetic form factors from exp. data: Lepton-G • (L.G. Landsberg et al. Phys. Rep. 128(85)301) • Angular distr. of leptons in the virtual photon’s restframe: R. Averbeck, SUNY SB

  10. Proof of principle: p+Be @ 450 GeV/c (CERES) • Take resolution into account: • Take acceptance into account: • Generation and decay of 10M primary particles/species: • Reasonable description of data (as did GENESIS) • EXODUS technically OK! R. Averbeck, SUNY SB

  11. PHENIX: resolution and acceptance • momentum resolution: (nominal: ) • PHENIX acceptance filter (available from J.Jia) R. Averbeck, SUNY SB

  12. Electrons in PHENIX (Au+Au @ 130 GeV): part I • Relative weights from thermal model (except J/Y) • transverse momentum distribution from data (+ mt scaling) • flat rapidity distributions • Run1 momentum resolution + full PHENIX acceptance • But what about the contribution from open charm? R. Averbeck, SUNY SB

  13. Open charm production in PYTHIA • Goal: tune PYTHIA to describe existing open-charm data (following P. Braun-Munzinger et al. Eur.Phys.J. C 1(98)123)and extrapolate to RHIC • the surprising truth: data exist only from SPS and FNAL fixed target experiments (srqt(s) < 40 GeV) • parameters available in PYTHIA: • parton-distribution function (pdf): MRS(G) • mass of charm quark: mc = 1.35 GeV/c2 • average intrinsic transverse momentum of partons: <kt2> = 1.0 (GeV/c)2 • K (“fudge” cross section scaling factor): K = 5.2 R. Averbeck, SUNY SB

  14. PYTHIA tuning: total D cross sections • PYTHIA describes sqrt(s) dependence • different K factors for charged and neutral Ds! • different PDFs do equally well • different <kt2>work too R. Averbeck, SUNY SB

  15. PYTHIA tuning: D kinematics • Data: D+, D-, D0, D0, Ds+, Ds+ (E769 PRL 77(96)2392) • Common K factor: 5.2 Different PDFs: different <kt2>: R. Averbeck, SUNY SB

  16. PYTHIA tuning: D-meson correlations • Data: D+, D-, D0, D0, Ds+, Ds+(WA92 CERN PPE/36-180) R. Averbeck, SUNY SB

  17. PYTHIA extrapolation to RHIC • extrapolation to RHIC: • reasonably small uncertainty • cc cross sections (pp): • 380 mb (130 GeV) • 730 mb (200 GeV) R. Averbeck, SUNY SB

  18. Electrons in PHENIX (Au+Au @ 130 GeV): part II • Add semi-leptonic decay contributions from open charm to cocktail from light-meson decays: R. Averbeck, SUNY SB

  19. Electrons in PHENIX (Au+Au @ 130 GeV): part II • Expected pair spectrum with nominal resolution: R. Averbeck, SUNY SB

  20. Summary • (Simple) simulation tools are available • phenomenological event generator • decay machine • detector resolution parameterization • acceptance filter • and can easily be extended! • PYTHIA: • describes existing open-charm data • has been extrapolated to RHIC energies • has been coupled with EXODUS • In case you want to use the package: GO AHEAD! R. Averbeck, SUNY SB

More Related