Alignment

1 / 8

# Alignment - PowerPoint PPT Presentation

Alignment. Which way is up?. w. Local Plane Coordinate System. q. v. r. u. z. r i. Plane i. r 0,i. Tower Origin. z’. y’. r 0. x’. y. x. Coordinate Systems.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about ' Alignment' - may-ryan

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

### Alignment

Which way is up?

w

Local Plane Coordinate System

q

v

r

u

z

ri

Plane i

r0,i

Tower Origin

z’

y’

r0

x’

y

x

Coordinate Systems

R = Rotation matrix transforming from local to global systemr0 = Position of Tower originr0,i = Translation vector from global to local originri = Position, relative to tower origin, of plane origin

Local to Global:

r = Rq + r0,i

Global to Local:

q = R-1(r – r0,i)

Global Coordinate System

w

Local Plane Coordinate System

q

v

r

u

z

ri

Plane i

r0,i

Tower Origin

z’

y’

r0

x’

y

x

Coordinate Systems(another view)

R = Rotation matrix transforming from local to global systemr0 = Position of Tower originr0,i = Translation vector from global to local originri = Position, relative to tower origin, of plane origin

Local to Global:

r = Rq + r0,i

Global to Local:

q = R-1(r – r0,i)

Global Coordinate System

Transformations
• Rotation R and translation r0,i are for a perfectly aligned detector
• For Glast, we can take R = I (the identity matrix)
• Vector to origin of the ith plane:
• r0,i = r0 + ri
• For Glast we have ri = (0,0,zi)
• Corrections to perfect alignment will be small, above are modified by and incremental rotation R and translation r:
• R→RR
• r0→ r0 + r0
• These corrections give:
• r0,I = r0 + r0 + Rri
• r = RRq + r0 + r0+ Rri = R(Rq + ri) + r0 + r0
• q = (RR)-1(r - r0 - r0 - Rri)

cos β 0 sin β

0 1 0

-sin β 0 cos β

Ry(β)=

• 0 0
• 0 cos α -sin α
• 0 sin α cos α

Cos γ -sin γ 0

Sin γ cos γ 0

0 0 1

Rx(α) =

Rz(γ ) =

Incremental Rotation Matrix
• Express the incremental rotation matrix as:R = Rx(α)Ry(β)Rz(γ )where Rx(α), Ry(β)and Rz(γ )are small rotations by α, β, γ about the x-axis, y-axis and z-axis, respectively
• In General

cos β cos γ cos γ sin αsin β- cos α sin γ cos α cos γ sin β + sin α sin γ

cos β sin γ cos αcos γ + sin α sin β sin γ -cos γ sin α + cos α sin β sin γ

- sin β cos β sin α cos  α cos β

R =

1 -γβ

γ 1 -α

-βα 1

R =

Incremental Rotation Matrix(continued)
• Multiplying it out, we get:
• Taking α, β and γ to be small (and ignoring terms above 1st order) gives:

1 -γβ

γ 1 -α

-βα 1

x0 + x0

y0 + y0

z0 + z0

ui

vi

zi

+

r=

Local to Global Transformation
• Start with: r = R(Rq + ri) + r0 + r0
• For Glast, R = I, the identity matrix
• R as given on the previous page
• ri = (0, 0, zi) since, for Glast, the silicon planes are parallel to x-y plane
• q = (ui, vi, 0) since the measurement is in the sense plane (no z coordinate)
• This gives:

x = ui - γvi + βzi + x0 + x0y = vi + γui - αzi + y0 + y0z = zi - βui + αvi + z0 + z0

1 γ -β

-γ 1 α

β -α 1

x - x0 - x0 - βzi

y - y0 + y0 + αzi

z - z0 + z0 - zi

q=

Global to Local Transformation
• Start with: q = (RR)-1(r - r0 - r0 - Rri)
• For Glast, R = I, the identity matrix
• R as given on the previous page, to 1st order R-1 = RT
• Rri = (βzi, - αzi, zi)
• This gives (keeping terms to 1st order only):

ui = x – x0 –x0 + γ (y – y0 – y0) – β (z – z0 – z0)

vi = y – y0 – y0 – γ (x – x0 – x0) + α (z – z0 –z0)

wi = z – z0 –z0 – β (x – x0 – x0) + α (y – y0 – y0) – zi