1 / 20

Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions

Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions. Kenneth Wood St Andrews. Radiation Transfer + Hydrodynamics. RT Models: Barbara Whitney, Jon Bjorkman, Christina Walker, Mark O’Sullivan Dust Theory: Mike Wolff

maximos
Download Presentation

Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Monte Carlo Radiation Transfer in Protoplanetary Disks:Disk-Planet Interactions Kenneth Wood St Andrews

  2. Radiation Transfer + Hydrodynamics RT Models: Barbara Whitney, Jon Bjorkman, Christina Walker, Mark O’Sullivan Dust Theory: Mike Wolff SPH Models: Ken Rice, Mike Truss, Ian Bonnell Observations: Rachel Akeson, Charlie Lada, Ed Churchwell, Glenn Schneider, Angela Cotera, Keivan Stassun

  3. Monte Carlo Development History • Scattered light disks & envelopes (1992) • 3D geometry & illumination (1996) • Dust radiative equilibrium (2001) SEDs disks + envelopes • Monte Carlo for disk surface + diffusion for interior (2002) • Density grids from SPH simulations (2003) • Spatial variation of dust opacity (2003) • Self consistent vertical hydrostatic equilibrium (2004) 1992: Predictions 1996: HST data GM Aur: 4AU gap, disk-planet interaction

  4. Disk Structure Calculations • Our models used parameterized disks: power laws for S(r), h(r) • Disk theory: reduce model parameter space • Irradiated accretion disks: S ~ r -1, h ~ r1.25 (D’Alessio, Calvet, & collaborators) • New Monte Carlo: iterate for disk structure (Walker et al. 2004) • Model disk-planet interactions in GM Aur

  5. Disk-Planet Interactions: Gap Clearing • Observational signatures: images, SEDs? Simulation from Ken Rice & Phil Armitage Papaloizou, Lin, Bodenheimer, Lubow, Artymowicz, Nelson, D’Angelo, Kley, …

  6. 700mm 700mm ALMA simulation Wolf et al. 2002 Protoplanetary Disks • Need high resolution imaging: ALMA • Gap clearing simulation images:

  7. Rin = 7R* Rin = 4 AU GM Aur Inner Gaps from SED Modeling • Remove inner disk material: redistribute near-IR excess emission to longer ls Rice et al. (2003) See also: Dullemond, et al. Calvet, D’Alessio

  8. T 6 AU 20 AU 300 AU r1/5 GM Aur Estimating Rin from SEDs • Hot inner edge emits in IR • Include inner edge emission when estimating Rin

  9. GM Aur Monte Carlo, Rin = 4 AU, i = 0 - 50 CG97, Rin = 0.1 AU CG97, Rin = 4 AU Vertical Hydrostatic Equilibrium

  10. ISM Disk dust Disk Dust: Grain Growth Dust Size Distribution: Power law + exponential decay Grain sizes in excess of 50mm Grayer opacity compared to ISM Fits HH30, GM Aur, AA Tau, … Opacity slopes: Dust model: ksub-mm ~ l-0.8; kB/kK ~ 2.5 Beckwith & Sargent (1991): sub-mm continuum SEDs: k ~ l-1 Watson & Stapelfeldt (2004): HH 30 IRS: kB/kK ~ 1.5 – 4.5

  11. 1200 AU GM Aur: Disk/Planet Interaction? Schneider et al. 2003 • NICMOS coronagraph • Scattered light modeling: • Mdisk ~ 0.04 M8; Rdisk ~ 300 AU; i ~ 50

  12. GM Aur: Disk/Planet Interaction? • Tiny near-IR excess: inner hole first suggested by Koerner, Sargent, & Beckwith (1993) • SED model requires 4AU gap: planet?

  13. GM Aur: Disk/Planet Interaction? • 3D SPH calculation from Ken Rice • Planet at 2.5AU clears inner 4AU in ~2000 yr Rice et al. 2003

  14. GM Aur: Disk/Planet Interaction? • Higher mass “planets”: sharper truncation Rice et al. 2003

  15. GM Aur: Disk/Planet Interaction? • Spitzer SED can discriminate “planet” mass • Centroid shifting ~ 0.1mas: Keck, SIM? Mp = 2MJ Mp = 50MJ Rice et al. 2003

  16. GM Aur DM Tau Lk Ca 15 TW Hya More Disks with Gaps • IRTF: Bergin, Calvet, Sitko, et al. (2004) • Gap sizes: 3 AU < Rgap < 7 AU • Silicate emission: smaller grains in inner disk • Sharp truncation, very low density inner disks

  17. GM Aur: 6.5 AU Gap • SED model requires low density material in cleared region • Inner disk mass ~ 10-8M8 • High resolution imaging of inner holes…?

  18. T r1/5 GM Aur: 6.5 AU Gap • Inner disk mass ~ 10-8M8

  19. 2mm 8mm 170mm • Low density material in gap “fills in” images • Inner gaps more obvious in SEDs !!

  20. Summary & Future Research • Monte Carlo: self-consistent disk structure calculations • GM Aur: Disk-planet interaction, need mid-IR data • Direct imaging of inner gaps: low density material “fills in” surface brightness => SEDs find gaps! • Coding: Radiation pressure Include gas opacity Transiently heated grains • Goal: merge radiation transfer & hydro • Codes now available at: http://gemelli.spacescience.org/~bwhitney/codes

More Related