Chapter 29
This presentation is the property of its rightful owner.
Sponsored Links
1 / 61

Chapter 29 PowerPoint PPT Presentation

  • Uploaded on
  • Presentation posted in: General

Chapter 29. Nuclear Physics. Milestones in the Development of Nuclear Physics. 1896 – the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation had three types Alpha (He nucleus) Beta (electrons) Gamma (high-energy photons).

Download Presentation

Chapter 29

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

Chapter 29

Chapter 29

Nuclear Physics

Milestones in the development of nuclear physics

Milestones in the Development of Nuclear Physics

  • 1896 – the birth of nuclear physics

    • Becquerel discovered radioactivity in uranium compounds

  • Rutherford showed the radiation had three types

    • Alpha (He nucleus)

    • Beta (electrons)

    • Gamma (high-energy photons)

More milestones

More Milestones

  • 1911 Rutherford, Geiger and Marsden performed scattering experiments

    • Established the point mass nature of the nucleus

    • Nuclear force was a new type of force

  • 1919 Rutherford and coworkers first observed nuclear reactions in which naturally occurring alpha particles bombarded nitrogen nuclei to produce oxygen

Milestones final

Milestones, final

  • 1932 Cockcroft and Walton first used artificially accelerated protons to produce nuclear reactions

  • 1932 Chadwick discovered the neutron

  • 1933 the Curies discovered artificial radioactivity

  • 1938 Hahn and Strassman discovered nuclear fission

  • 1942 Fermi and collaborators achieved the first controlled nuclear fission reactor

Ernest rutherford

Ernest Rutherford

  • 1871 – 1937

  • Discovery of atoms being broken apart

  • Studied radioactivity

  • Nobel prize in 1908

Some properties of nuclei

Some Properties of Nuclei

  • All nuclei are composed of protons and neutrons

    • Exception is ordinary hydrogen with just a proton

  • The atomic number, Z, equals the number of protons in the nucleus

  • The neutron number, N, is the number of neutrons in the nucleus

  • The mass number, A, is the number of nucleons in the nucleus

    • A = Z + N

    • Nucleon is a generic term used to refer to either a proton or a neutron

    • The mass number is not the same as the mass



  • Symbol:

    • X is the chemical symbol of the element

  • Example:

    • Mass number is 27

    • Atomic number is 13

    • Contains 13 protons

    • Contains 14 (27 – 13) neutrons

  • The Z may be omitted since the element can be used to determine Z

  • More properties

    More Properties

    • The nuclei of all atoms of a particular element must contain the same number of protons

    • They may contain varying numbers of neutrons

      • Isotopes of an element have the same Z but differing N and A values

      • Example:



    • The proton has a single positive charge, +e

    • The electron has a single negative charge, -e

    • The neutron has no charge

      • Makes it difficult to detect

    • e = 1.602 177 33 x 10-19 C

    Chapter 29


    • It is convenient to use unified mass units, u, to express masses

      • 1 u = 1.660 559 x 10-27 kg

      • Based on definition that the mass of one atom of C-12 is exactly 12 u

    • Mass can also be expressed in MeV/c2

      • From ER = m c2

      • 1 u = 931.494 MeV/c2

    Summary of masses

    Summary of Masses

    The size of the nucleus

    The Size of the Nucleus

    • First investigated by Rutherford in scattering experiments

    • He found an expression for how close an alpha particle moving toward the nucleus can come before being turned around by the Coulomb force

    • The KE of the particle must be completely converted to PE

    Size of the nucleus cont

    Size of the Nucleus, cont

    • d gives an upper limit for the size of the nucleus

    • Rutherford determined that

      • For gold, he found d = 3.2 x 10-14 m

      • For silver, he found d = 2 x 10-14 m

    • Such small lengths are often expressed in femtometers where 1 fm = 10-15 m

      • Also called a fermi

    Size of nucleus current

    Size of Nucleus, Current

    • Since the time of Rutherford, many other experiments have concluded:

      • Most nuclei are approximately spherical

      • Average radius is

        • ro = 1.2 x 10-15 m

    Density of nuclei

    Density of Nuclei

    • The volume of the nucleus (assumed to be spherical) is directly proportional to the total number of nucleons

    • This suggests that all nuclei havenearly the same density

    • Nucleons combine to form a nucleus as though they were tightly packed spheres

    Maria goeppert mayer

    Maria Goeppert-Mayer

    • 1906 – 1972

    • Best known for her development of shell model of the nucleus

    • Shared Nobel Prize in 1963

    Nuclear stability

    Nuclear Stability

    • There are very large repulsive electrostatic forces between protons

      • These forces should cause the nucleus to fly apart

    • The nuclei are stable because of the presence of another, short-range force, called the nuclear force

      • This is an attractive force that acts between all nuclear particles

      • The nuclear attractive force is stronger than the Coulomb repulsive force at the short ranges within the nucleus

    Nuclear stability cont

    Nuclear Stability, cont

    • Light nuclei are most stable if N = Z

    • Heavy nuclei are most stable when N > Z

      • As the number of protons increase, the Coulomb force increases and so more nucleons are needed to keep the nucleus stable

    • No nuclei are stable when Z > 83

    Binding energy

    Binding Energy

    • The total energy of the bound system (the nucleus) is less than the combined energy of the separated nucleons

      • This difference in energy is called the binding energy of the nucleus

        • It can be thought of as the amount of energy you need to add to the nucleus to break it apart into separated protons and neutrons

    Binding energy per nucleon

    Binding Energy per Nucleon

    Binding energy notes

    Binding Energy Notes

    • Except for light nuclei, the binding energy is about 8 MeV per nucleon

    • The curve peaks in the vicinity of A = 60

      • Nuclei with mass numbers greater than or less than 60 are not as strongly bound as those near the middle of the periodic table

    • The curve is slowly varying at A > 40

      • This suggests that the nuclear force saturates

      • A particular nucleon can interact with only a limited number of other nucleons

    Marie curie

    Marie Curie

    • 1867 – 1934

    • Discovered new radioactive elements

    • Shared Nobel Prize in physics in 1903

    • Nobel Prize in Chemistry in 1911



    • Radioactivity is the spontaneous emission of radiation

    • Experiments suggested that radioactivity was the result of the decay, or disintegration, of unstable nuclei

    Radioactivity types

    Radioactivity – Types

    • Three types of radiation can be emitted

      • Alpha particles

        • The particles are 4He nuclei

      • Beta particles

        • The particles are either electrons or positrons

          • A positron is the antiparticle of the electron

          • It is similar to the electron except its charge is +e

      • Gamma rays

        • The “rays” are high energy photons

    Distinguishing types of radiation

    Distinguishing Types of Radiation

    • A radioactive beam is directed into a region with a magnetic field

    • The gamma particles carry no charge and they are not deflected

    • The alpha particles are deflected upward

    • The beta particles are deflected downward

      • A positron would be deflected upward

    Penetrating ability of particles

    Penetrating Ability of Particles

    • Alpha particles

      • Barely penetrate a piece of paper

    • Beta particles

      • Can penetrate a few mm of aluminum

    • Gamma rays

      • Can penetrate several cm of lead

    The decay constant

    The Decay Constant

    • The number of particles that decay in a given time is proportional to the total number of particles in a radioactive sample

      • ΔN = -λ N Δt

        • λ is called the decay constant and determines the rate at which the material will decay

    • The decay rate or activity, R, of a sample is defined as the number of decays per second

    Decay curve

    Decay Curve

    • The decay curve follows the equation

      • N = No e- λt

    • The half-life is also a useful parameter

      • The half-life is defined as the time it takes for half of any given number of radioactive nuclei to decay



    • The unit of activity, R, is the Curie, Ci

      • 1 Ci = 3.7 x 1010 decays/second

    • The SI unit of activity is the Becquerel, Bq

      • 1 Bq = 1 decay / second

        • Therefore, 1 Ci = 3.7 x 1010 Bq

    • The most commonly used units of activity are the mCi and the µCi

    Alpha decay

    Alpha Decay

    • When a nucleus emits an alpha particle it loses two protons and two neutrons

      • N decreases by 2

      • Z decreases by 2

      • A decreases by 4

    • Symbolically

      • X is called the parent nucleus

      • Y is called the daughter nucleus

    Alpha decay example

    Alpha Decay – Example

    • Decay of 226 Ra

    • Half life for this decay is 1600 years

    • Excess mass is converted into kinetic energy

    • Momentum of the two particles is equal and opposite

    Decay general rules

    Decay – General Rules

    • When one element changes into another element, the process is called spontaneous decay or transmutation

    • The sum of the mass numbers, A, must be the same on both sides of the equation

    • The sum of the atomic numbers, Z, must be the same on both sides of the equation

    • Conservation of mass-energy and conservation of momentum must hold

    Beta decay

    Beta Decay

    • During beta decay, the daughter nucleus has the same number of nucleons as the parent, but the atomic number is changed by one

    • Symbolically

    Beta decay cont

    Beta Decay, cont

    • The emission of the electron is from the nucleus

      • The nucleus contains protons and neutrons

      • The process occurs when a neutron is transformed into a proton and an electron

      • Energy must be conserved

    Beta decay electron energy

    Beta Decay – Electron Energy

    • The energy released in the decay process should almost all go to kinetic energy of the electron (KEmax)

    • Experiments showed that few electrons had this amount of kinetic energy



    • To account for this “missing” energy, in 1930 Pauli proposed the existence of another particle

    • Enrico Fermi later named this particle the neutrino

    • Properties of the neutrino

      • Zero electrical charge

      • Mass much smaller than the electron, probably not zero

      • Spin of ½

      • Very weak interaction with matter

    Beta decay completed

    Beta Decay – Completed

    • Symbolically

      •  is the symbol for the neutrino

      • is the symbol for the antineutrino

    • To summarize, in beta decay, the following pairs of particles are emitted

      • An electron and an antineutrino

      • A positron and a neutrino

    Gamma decay

    Gamma Decay

    • Gamma rays are given off when an excited nucleus “falls” to a lower energy state

      • Similar to the process of electron “jumps” to lower energy states and giving off photons

      • The photons are called gamma rays, very high energy relative to light

    • The excited nuclear states result from “jumps” made by a proton or neutron

    • The excited nuclear states may be the result of violent collision or more likely of an alpha or beta emission

    Gamma decay example

    Gamma Decay – Example

    • Example of a decay sequence

      • The first decay is a beta emission

      • The second step is a gamma emission

      • The C* indicates the Carbon nucleus is in an excited state

      • Gamma emission doesn’t change either A or Z

    Enrico fermi

    Enrico Fermi

    • 1901 – 1954

    • Produced transuranic elements

    • Other contributions

      • Theory of beta decay

      • Free-electron theory of metals

      • World’s first fission reactor (1942)

    • Nobel Prize in 1938

    Uses of radioactivity

    Uses of Radioactivity

    • Carbon Dating

      • Beta decay of 14C is used to date organic samples

      • The ratio of 14C to 12C is used

    • Smoke detectors

      • Ionization type smoke detectors use a radioactive source to ionize the air in a chamber

      • A voltage and current are maintained

      • When smoke enters the chamber, the current is decreased and the alarm sounds

    More uses of radioactivity

    More Uses of Radioactivity

    • Radon pollution

      • Radon is an inert, gaseous element associated with the decay of radium

      • It is present in uranium mines and in certain types of rocks, bricks, etc that may be used in home building

      • May also come from the ground itself

    Natural radioactivity

    Natural Radioactivity

    • Classification of nuclei

      • Unstable nuclei found in nature

        • Give rise to natural radioactivity

      • Nuclei produced in the laboratory through nuclear reactions

        • Exhibit artificial radioactivity

    • Three series of natural radioactivity exist

      • Uranium

      • Actinium

      • Thorium

        • See table 29.2

    Decay series of 232 th

    Decay Series of 232Th

    • Series starts with 232Th

    • Processes through a series of alpha and beta decays

    • Ends with a stable isotope of lead, 208Pb

    Nuclear reactions

    Nuclear Reactions

    • Structure of nuclei can be changed by bombarding them with energetic particles

      • The changes are called nuclear reactions

    • As with nuclear decays, the atomic numbers and mass numbers must balance on both sides of the equation

    Nuclear reactions example

    Nuclear Reactions – Example

    • Alpha particle colliding with nitrogen:

    • Balancing the equation allows for the identification of X

    • So the reaction is

    Q values

    Q Values

    • Energy must also be conserved in nuclear reactions

    • The energy required to balance a nuclear reaction is called the Q value of the reaction

      • An exothermic reaction

        • There is a mass “loss” in the reaction

        • There is a release of energy

        • Q is positive

      • An endothermic reaction

        • There is a “gain” of mass in the reaction

        • Energy is needed, in the form of kinetic energy of the incoming particles

        • Q is negative

    Threshold energy

    Threshold Energy

    • To conserve both momentum and energy, incoming particles must have a minimum amount of kinetic energy, called the threshold energy

      • m is the mass of the incoming particle

      • M is the mass of the target particle

    • If the energy is less than this amount, the reaction cannot occur

    Radiation damage in matter

    Radiation Damage in Matter

    • Radiation absorbed by matter can cause damage

    • The degree and type of damage depend on many factors

      • Type and energy of the radiation

      • Properties of the absorbing matter

    • Radiation damage in biological organisms is primarily due to ionization effects in cells

      • Ionization disrupts the normal functioning of the cell

    Types of damage

    Types of Damage

    • Somatic damage is radiation damage to any cells except reproductive ones

      • Can lead to cancer at high radiation levels

      • Can seriously alter the characteristics of specific organisms

    • Genetic damage affects only reproductive cells

      • Can lead to defective offspring

    Units of radiation exposure

    Units of Radiation Exposure

    • Roentgen [R]

      • That amount of ionizing radiation that will produce 2.08 x 109 ion pairs in 1 cm3 of air under standard conditions

      • That amount of radiation that deposits 8.76 x 10-3 J of energy into 1 kg of air

    • Rad (Radiation Absorbed Dose)

      • That amount of radiation that deposits 10-2 J of energy into 1 kg of absorbing material

    More units

    More Units

    • RBE (Relative Biological Effectiveness)

      • The number of rad of x-radiation or gamma radiation that produces the same biological damage as 1 rad of the radiation being used

      • Accounts for type of particle which the rad itself does not

    • Rem (Roentgen Equivalent in Man)

      • Defined as the product of the dose in rad and the RBE factor

        • Dose in rem = dose in rad X RBE

    Radiation levels

    Radiation Levels

    • Natural sources – rocks and soil, cosmic rays

      • Background radiation

      • About 0.13 rem/yr

    • Upper limit suggested by US government

      • 0.50 rem/yr

      • Excludes background and medical exposures

    • Occupational

      • 5 rem/yr for whole-body radiation

      • Certain body parts can withstand higher levels

      • Ingestion or inhalation is most dangerous

    Applications of radiation

    Applications of Radiation

    • Sterilization

      • Radiation has been used to sterilize medical equipment

      • Used to destroy bacteria, worms and insects in food

      • Bone, cartilage, and skin used in graphs is often irradiated before grafting to reduce the chances of infection

    Applications of radiation cont

    Applications of Radiation, cont

    • Tracing

      • Radioactive particles can be used to trace chemicals participating in various reactions

        • Example, 131I to test thyroid action

    • CAT scans

      • Computed Axial Tomography

      • Produces pictures with greater clarity and detail than traditional x-rays

    Applications of radiation final

    Applications of Radiation, final

    • MRI

      • Magnetic Resonance Imaging

      • When a nucleus having a magnetic moment is placed in an external magnetic field, its moment processes about the magnetic field with a frequency that is proportional to the field

      • Transitions between energy states can be detected electronically

    Radiation detectors

    Radiation Detectors

    • A Geiger counter is the most common form of device used to detect radiation

    • It uses the ionization of a medium as the detection process

    • When a gamma ray or particle enters the thin window, the gas is ionized

    • The released electrons trigger a current pulse

    • The current is detected and triggers a counter or speaker

    Detectors 2

    Detectors, 2

    • Semiconductor Diode Detector

      • A reverse biased p-n junction

      • As a particle passes through the junction, a brief pulse of current is created and measured

    • Scintillation counter

      • Uses a solid or liquid material whose atoms are easily excited by radiation

      • The excited atoms emit visible radiation as they return to their ground state

      • With a photomultiplier, the photons can be converted into an electrical signal

    Detectors 3

    Detectors, 3

    • Track detectors

      • Various devices used to view the tracks or paths of charged particles

        • Photographic emulsion

          • Simplest track detector

          • Charged particles ionize the emulsion layer

          • When the emulsion is developed, the track becomes visible

        • Cloud chamber

          • Contains a gas cooled to just below its condensation level

          • The ions serve as centers for condensation

          • Particles ionize the gas along their path

          • Track can be viewed and photographed

    Detectors 4

    Detectors, 4

    • Track detectors, cont

      • Bubble Chamber

        • Contains a liquid near its boiling point

        • Ions produced by incoming particles leave tracks of bubbles

        • The tracks can be photographed

      • Wire Chamber

        • Contains thousands of closely spaced parallel wires

        • The wires collect electrons created by the passing ionizing particle

        • A second grid allows the position of the particle to be determined

        • Can provide electronic readout to a computer

    Homework fun

    Homework fun

    • Appl. Concepts, 6,8,10,14

    • Problems 1,5,6,7,9,15,18,20,25,26,27,31,33,34,38,39,40,42,44.

  • Login