Assessing the Influence of Observational Data Error on SiB 2 Model Parameter Uncertainty
Download
1 / 16

9 th LBA-ECO Science Team Meeting - PowerPoint PPT Presentation


  • 77 Views
  • Uploaded on

Assessing the Influence of Observational Data Error on SiB 2 Model Parameter Uncertainty. 9 th LBA-ECO Science Team Meeting. Luis A. Bastidas 1 , E. Rosero 1 , S. Pande 1 , W.J. Shuttleworth 2 1 Civil and Environmental Engineering and Utah Water Research Laboratory, Logan, Utah

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' 9 th LBA-ECO Science Team Meeting' - marsden-reese


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Assessing the Influence of Observational Data Error on SiB 2 Model Parameter Uncertainty

9th LBA-ECO Science Team Meeting

Luis A. Bastidas1,

E. Rosero1, S. Pande1, W.J. Shuttleworth2

1Civil and Environmental Engineering and

Utah Water Research Laboratory, Logan, Utah

2Hydrology and Water Resources,

SAHRA – NSF Science and Technology Center

University of Arizona, Tucson, Arizona


Modeling

Model Qualification Model Parameter Uncertainty

Analysis

Conceptual

Model

Reality

Model Validation

Code Verification

Simulation

Programming

Model

Construction

Model Code

Model

Model Calibration

Modeling

Modified from Refsgaard, 2001


Components of a model

X Model Parameter Uncertaintyo

Inputs

Outputs

State Variables

X

I

O

Model Structure

Model Structure

Xt = F ( Xt-1, , It-1 )

Ot = G ( Xt, , It )

Initial States

Parameters

Components of a Model


Pareto optimality
Pareto Optimality Model Parameter Uncertainty

Parameter Space

Criterion Space

f2

β

f1

Criterion f2

Parameter 2

δ

γ

α

α

γ

δ

β

Parameter 1

Criterion f1


Sensitivity analysis sib 2 @ santarem km 83
Sensitivity Analysis. SiB 2 @ Santarem Km 83 Model Parameter Uncertainty

MOGSA Algorithm

Bastidas et al., JGR,1999

Multi Objective Generalized

Sensitivity Analysis

The further away from

the center the more

sensitive the parameter

Pre-logging

Post-logging


Pareto set of parameters
Pareto Set of Parameters Model Parameter Uncertainty


Observed vs computed pre logging
Observed vs Computed. Pre-logging Model Parameter Uncertainty


Dry typical periods
Dry Typical Periods Model Parameter Uncertainty


Wet typical periods
Wet Typical Periods Model Parameter Uncertainty


Daily average
Daily Average Model Parameter Uncertainty

E

H

CO2


Performance measures
Performance Measures Model Parameter Uncertainty

E

H

CO2

E

H

CO2

R

NSE

BIAS

RMSE


Objectives for radiation and precipitation errors
Objectives for Radiation and Precipitation Errors Model Parameter Uncertainty

Heteroscedastic Error Added


Parameter distributions
Parameter Distributions Model Parameter Uncertainty


Parameter distributions1
Parameter Distributions Model Parameter Uncertainty

0

1


Daily average1
Daily Average Model Parameter Uncertainty

E

H

CO2

0

24

0

24

0

24


Beware
Beware …. Model Parameter Uncertainty

FOOL OUTSIDE

“A fool with a tool is still a fool”


ad