1 / 24

RIKEN PHENIX ミーティング D 論用研究 進捗報告 単 電子生成の二重スピン非対称度測定

RIKEN PHENIX ミーティング D 論用研究 進捗報告 単 電子生成の二重スピン非対称度測定. 中村 克朗 (京都大学) 2010 / 10/ 15. 核子内グルーオン偏極度と重クォーク生成の二重スピン非対称度. 核子内グルーオン偏極度 spin puzzle なぜ重クォーク生成か ? g g  Q Q -bar の hard scattering process が主な生成過程となる  より直接的な ΔG の測定が可能となる ΔG の絶対値に感度の高い測定となる グルーオン偏極度の測定に適したチャンネルである.

markku
Download Presentation

RIKEN PHENIX ミーティング D 論用研究 進捗報告 単 電子生成の二重スピン非対称度測定

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RIKEN PHENIX ミーティングD論用研究 進捗報告単電子生成の二重スピン非対称度測定 中村 克朗 (京都大学) 2010 / 10/ 15

  2. 核子内グルーオン偏極度と重クォーク生成の二重スピン非対称度核子内グルーオン偏極度と重クォーク生成の二重スピン非対称度 • 核子内グルーオン偏極度 • spin puzzle • なぜ重クォーク生成か? • g g Q Q-bar のhard scattering process が主な生成過程となる • より直接的な ΔG の測定が可能となる • ΔGの絶対値に感度の高い測定となる • グルーオン偏極度の測定に適したチャンネルである JPS fall meeting

  3. PHENIXにおける重クォーク生成測定 • photonic electron • non-photonic electron • 光子転換 • Dalitz 崩壊 • 直接光子生成 • small, but significant at high pT • heavy meson 崩壊 • Kaon崩壊 • vector meson 崩壊 ( 欲しい signal ) • PHENIXにおける重クォーク生成の測定 • heavy meson 崩壊からの単電子を測定 • PHENIXで測定される電子の生成源 JPS fall meeting

  4. heavy meson測定におけるバックグラウンド simulation result of e yield • photonic electron dominant background background • 光子転換 • Dalitz 崩壊 • 直接光子生成 • small, but significant at high pT photonic ~95% HBD により除去 • non-photonic electron • heavy meson 崩壊 • Kaon崩壊 • vector meson 崩壊 ( 欲しい signal ) background ~ a few% of non-photonic electrons negligible JPS fall meeting

  5. Mesh Primary ionization γ HV e- CsI layer Triple GEM Readout Pads Hadron Blind Detector(HBD) CF4 gas photonic electron ( pair electrons ) non-photonic electron ( single electron ) 50cm HBD • Hadron Blind Detector • CsI蒸着のGEMによるgas Cherenkov 検出器 • hadron除去( ) • hadron除去能力 > 10 • 27mm pad size • Cherenkov blob直径 ~ 36mm • 1つの電子通過に対して約 20 個のphotoelectron を放出 • hadron : 平均約 1 photoelectron •  non-photonicとphotonicでクラスターの電荷量が異なる • 電荷量によって区別することが可能 JPS fall meeting

  6. HBD Event Display HBD charge [p.e.] Clustering Algorithm Not Stable seed pad seed pad seed pad electron track seed pad: pad with large charge (> 3p.e.) Dead Dead • make a cluster with seed pads • add neighbor pads to the cluster • cluster charge is the sum of pad charges N S S N add blob (cluster) information private clustering algorithm

  7. Electron Cut • electron cut • abs(bbc_z) < 20cm • quality==31|51|63 • n0>=2 • e/p cut • ecore>0, mom>0 • abs(emcsdphi_e)<4, abs(emcsdz_e)<4 • prob>0.01 • hbd association cut • abs(hbdsdphi) < 3.5 • abs(hbdsdz) < 3.5 • hbd_cluster_size >=2 : (reject fake hit) JPS fall meeting

  8. HBDnon-photonic & photonic 識別能力 photonic electron non-photonic electron eff. ~ 80% reject eff. ~ 30% single e cluster merged cluster JPS fall meeting • non-photonic electron と photonic electron は HBD のクラスター電荷量により区別される • non-photonic electrons と photonic electrons に対するクラスター電荷量分布は Dalitz 領域の electron pair を用いて測定可能 • Dalitz 領域: pair mass < 135MeV

  9. HBD charge distribution (East) North South North South #{bin content}/ #{all entry} Sect0 Sect3 low stat. very low stat. not stable gain Sect1 Sect4 very low stat. very low stat. Sect2 Sect5 Red: merged cluster Blue: separated cluster • Not including HBD efficiency • Integral(0,inf) = 1

  10. HBD charge distribution (West) North South North South Sect6 Sect9 strange shape low stat. Sect7 Sect10 low stat. low stat. Sect8 Sect11 Red: merged cluster Blue: separated cluster

  11. HBD charge distribution for Hadrons(fake hits) HBD charge distribution of “hadron cut” + “hbd association cut” tracks #{hadron cut && hbdassoci cut}/ #{hadron cut} • requiring following cuts • hadron cut • abs(bbc_z) < 20cm • quality == 63 • mom > 0.5 && mom < 3.0 • n0 <= 0 • ecore > 0 • e/p <0.4 • abs(emcsdphi_e)<4, abs(emcsdz_e)<4 • prob < 0.01 • hbdsect >= 0 && hbdsect < 12 • (tracks passing HBD acceptance) • hbd association cut • abs(hbdsdphi) < 3.5 • abs(hbdsdz) < 3.5 • hbdsize >= 2 threshold in offline code HBD charge [p.e.] normalized with the number of tracks satisfying hadroncut hadron efficiency < 10%

  12. HBD efficiency with J/phi events using good sector (sect 2,3,4(south), 8,9,10) HBD association efficiency w/o HBD size cut HBD association efficiency w/ HBD size cut HBD cut abs(hbdsdphi) < 3.5 abs(hbdsdz) < 3.5 hbdsize >= 2 efficiency ~ 162/213 = 76% • HBD cut • abs(hbdsdphi) < 3.5 • abs(hbdsdz) < 3.5 • efficiency ~ 193/213 = 91% 今使用しているcut

  13. HBD efficiency with J/phi events(select good region) 14.0cm 22.9cm good region good region HBD association efficiency w/o HBD size cut HBD association efficiency w/ HBD size cut HBD cut abs(hbdsdphi) < 3.5 abs(hbdsdz) < 3.5 hbdsize >= 2 efficiency ~ 66/77 = 86% • HBD cut • abs(hbdsdphi) < 3.5 • abs(hbdsdz) < 3.5 • efficiency ~ 100% within error 18.0cm 26.5cm

  14. データからの single ecluster 成分と merged cluster 成分の分離 HBD cluster charge distribution for electron tracks single e peak merged peak • リファレンスの電荷量分布を fit することにより、single e clusterの数と merged clusterの数を導出する • determine Nesingle and Nemerge • pt ごとに single e cluster の成分と merged clusterの成分の比が異なるのがわかる • pt が高くなるにつれて、non-photonic 成分の占める割合が大きくなっているのがわかる。 fitting result (sect 8 north) 0.75 < pt < 1.00 GeV/c fitting with the reference charge distributions HBD charge distribution for electron tracks sect8 north 0.75<pt<1.00GeV/c JPS fall meeting

  15. pt distribution of each component (East) North South North South Sect0 Sect3 Sect1 Sect4 Sect2 Sect5 NDF = 94 JPS fall meeting

  16. pt distribution of each component (West) North South North South Sect6 Sect9 Sect7 Sect10 Sect8 Sect11 NDF = 94 Red: merged cluster Blue: separated cluster

  17. single e cluster とmerged cluster の pt spectra single e cluster and merged cluster spectra fitting により求めたNesingle、Nemerge、Nfake heavy quark  e photonic e sources pt に対する振る舞いは正しく一致 cross section result of run2005 JPS fall meeting • fitting 結果、NesingleとNemergeを pt に対して plot • 2つの異なる slope を持っていることを確認 • non-photonic electron is dominant in single e cluster event • photonic electron is dominant in merged cluster event •  electron の分布の2つの異なる成分の分離に成功 • pt=1GeV/cで ΔNsingle/Nsingle~ 0.3%の誤差

  18. non-photonic electronとphotonic electron の抽出~ next step ~ electron candidates in detected tracks 欲しい signal a) c) a) b) non-photonic electron b) photonic electron c) HBD merged cluster HBD single e cluster • single e cluster には若干の photonic electron が混ざっている • これを取り除くことにより non-photonic electron の収量が得られる • HBD の simulation により、この割合を評価することができる photonic electron (separated event ) JPS fall meeting

  19. calculation of the fraction of photonic electron in single electron event • the positions of 2 separate clusters produced by Dalitz electron pair are close each other • Dalitz pair makes correlation in distance between clusters • different cluster distribution around the track between non-photonic election and photonic election • calculate the cluster distance distribution for non-photonic elections and photonic electrons • fit these distributions to cluster distribution of Run9 electron event, and determine the fraction e e+ D e- π detected another cluster should be found around the detected track single cluster produced by non-photonic electron single cluster produced by photonic electron

  20. non-photonic and photonic electron spectra reference r distribution form Dalitz events other clusters r distribution + fitting correlation 0.75 < pt < 1.00 GeV/c r [cm] Red: separated clusters Blue: merged clusters no correlation r [cm] Black : electron data (0.75 < pt < 1.00 GeV/c) Blue: merged cluster component Red: separated cluster component Violet: Blue+Red ~ same distribution as non-photonic electron clusters (no correlation)

  21. difficulties in reference distribution reference r distribution form Dalitz events 0.75 < pt < 1.00 GeV/c distance [cm] • not same as real distribution • large angle decay of pi0 is out of Central Arm acceptance • low statistics •  PISA simulation is required • PISA analysis is on going JPS fall meeting

  22. Roadmap to ALL • HBD simulation (hopefully finish by Nov.) • on going … • confirm HBD response for electrons • calculate the distance distribution • extract non-photonic electron spectrum • determine cross section spectrum (hopefully finish by Dec. or mid. Jan.) • acc. x eff. calculation • compare with old data • calculation of the asymmetry • Preliminary request(in this fiscal year !?) • systematic error estimation JPS fall meeting

  23. expected error bar of ALL 非対称度の理論曲線 と予想統計誤差 ε = S/(S+N) ~10-2 ~10-3 fitting result (sect 8 north) 0.75 < pt < 1.00 GeV/c ~10-3 accept region assumption PB = 57%, PY = 57% eff(non-photonic) = 80% eff(photonic) = 30% eff(fake hit) = 40% JPS fall meeting efficiency turn on curve

  24. Summary 陽子内のグルーオン偏極度に制限をかけるべく、Open Heavy Flavor生成断面積の二重スピン非対称度の解析を行っています。 Open Heavy Flavorからのheavy mesonにはnon-photonic electronを見ることによりアクセスできる。 Run9ではnon-photonic electronを見るためのHBDが稼働 HBDのデータを解析することにより、single electron cluster eventの収量を見積もることに成功 あとはHBD simulationにより、non-photonic electronの収量を得る。 今年度内の非対称度の導出+Preliminary取得を目標にしています JPS fall meeting

More Related