Fast 3d target oriented reverse time datuming
This presentation is the property of its rightful owner.
Sponsored Links
1 / 55

Fast 3D Target-Oriented Reverse Time Datuming PowerPoint PPT Presentation


  • 58 Views
  • Uploaded on
  • Presentation posted in: General

Fast 3D Target-Oriented Reverse Time Datuming. Shuqian Dong University of Utah. 2 Oct. 2008. Outline. Motivation. Theory. Numerical Tests. 2-D SEG/EAGE salt model. 3-D SEG/EAGE salt model. 3-D field data. Conclusions. Motivation. Numerical Tests. Theory. Conclusions. Motivation.

Download Presentation

Fast 3D Target-Oriented Reverse Time Datuming

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Fast 3d target oriented reverse time datuming

Fast 3D Target-Oriented Reverse Time Datuming

Shuqian Dong

University of Utah

2 Oct. 2008


Fast 3d target oriented reverse time datuming

Outline

  • Motivation

  • Theory

  • Numerical Tests

2-D SEG/EAGE salt model

3-D SEG/EAGE salt model

3-D field data

  • Conclusions

Motivation

Numerical Tests

Theory

Conclusions


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Outline

  • Motivation

  • Theory

  • Numerical Tests

2-D SEG/EAGE salt model

3-D SEG/EAGE salt model

3-D field data

  • Conclusions


Fast 3d target oriented reverse time datuming

km/s

Velocity model

0

0

0

Common shot gather

4.5

Time (s)

z (km)

z (km)

1.5

2.0

4.0

2.0

x (km)

x (km)

x (km)

8.0

8.0

8.0

0

0

0

KM image

Problem:

Defocusing: lower resolution, distorted image

Multiples: image artifacts.

Reason:

KM: high frequency approximation.

Motivation

Numerical Tests

Theory

Conclusions

Motivation

Solutions?


Fast 3d target oriented reverse time datuming

RTM image

Velocity model

KM image

Motivation

Numerical Tests

Theory

Conclusions

Motivation

Solutions:

  • Reverse time migration: solving two-way wave equation

  • Target-oriented reverse time datuming:

  • solving two-way wave equation to bypass overburden

Luo, 2002: target-oriented RTD

Luo and Schuster, 2004: bottom-up strategy


Fast 3d target oriented reverse time datuming

RTD

  • Complex structures cause defocusing effects

  • RTD can reduce defocusing effects

  • RTM is computationally expensive

  • RTD + Kirchhoff = accurate + cheap

Motivation

Numerical Tests

Theory

Conclusions

Motivation


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Motivation

  • Reduce defocusing effects for subsalt imaging

  • Closer to the target: better resolution

  • Bottom-up strategy: computational efficiency

  • Redatumed data can be used for least squares

  • migration and migration velocity analysis (MVA)


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Outline

  • Motivation

  • Theory

  • Numerical Tests

2-D SEG/EAGE salt model

3-D SEG/EAGE salt model

3-D field data

  • Conclusions


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Theory

Reverse time datuming

d(s|r)

S

R

x’’

x’


Fast 3d target oriented reverse time datuming

d(s|x’’)

g*(r|x”)

d(s|r)

d(s|x”)=

Motivation

Numerical Tests

Theory

Conclusions

Theory

Reverse time datuming

S

R

x’’

x’


Fast 3d target oriented reverse time datuming

g*(r|x”)

d(s|r)

d(s|x”)=

d(x’|x’’)

Motivation

Numerical Tests

Theory

Conclusions

Theory

Reverse time datuming

S

R

d(x’|x”)=g*(s|x’) d(s|x”)

x’’

x’


Fast 3d target oriented reverse time datuming

Real source number on surface: 10

Virtual source number on datum: 3

Motivation

Numerical Tests

Theory

Conclusions

Theory

Calculate Green’s functions

VSP (source on surface) Green’s functions: 10


Fast 3d target oriented reverse time datuming

Real source number on surface: 10

Virtual source number on datum: 3

VSP (source on surface) Green’s functions: 10

Motivation

Numerical Tests

Theory

Conclusions

Theory

Calculate Green’s functions

Reciprocity: RVSP=VSP

RVSP (source on datum) Green’s functions: 3


Fast 3d target oriented reverse time datuming

Reciprocity: RVSP =>VSP

Green’s functions: FFT: time domain => frequency domain

Crosscorrelation: Green’s functions with original data

IFFT: frequency domain => time domain

Redatumed data

Motivation

Numerical Tests

Theory

Conclusions

Workflow

FD: Compute RVSP Green’s functions

Original data: FFT: time domain =>frequency domain


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Outline

  • Motivation

  • Theory

  • Numerical Tests

2-D SEG/EAGE salt model

3-D SEG/EAGE salt model

3-D field data

  • Conclusions


Fast 3d target oriented reverse time datuming

km/s

Velocity model

0

0

0

0

4.5

Time (s)

Time (s)

Time (s)

z (km)

1.5

2.0

4.0

4.0

4.0

x (km)

x (km)

x (km)

x (km)

8.0

8.0

8.0

8.0

0

0

0

0

Motivation

Numerical Tests

Theory

Conclusions

2D SEG/EAGE Test

RVSP Green’s function

True CSG at datum

Redatumed CSG


Fast 3d target oriented reverse time datuming

km/s

Velocity model

0

0

0

0

4.5

z (km)

z (km)

z (km)

z (km)

1.5

2.0

2.0

2.0

2.0

x (km)

x (km)

x (km)

x (km)

8.0

8.0

8.0

8.0

0

0

0

0

KM image

RTM image

Motivation

Numerical Tests

Theory

Conclusions

2D SEG/EAGE Test

KM of redatumed data


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Outline

  • Motivation

  • Theory

  • Numerical Tests

2-D SEG/EAGE salt model

3-D SEG/EAGE salt model

3-D field data

  • Conclusions


Fast 3d target oriented reverse time datuming

km/s

4.5

0

x (km)

3.5

0

1.5

Z (km)

2.0

0

y (km)

2

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test

Velocity model

SSP geometry:

1700 shots

1700 receivers

Datum depth:

1.5 km

RVSP Green’s functions:

850 shots

1700 receivers


Fast 3d target oriented reverse time datuming

Original CSG

RVSP Green’s function

0

0

0

0

Time (s)

Time (s)

Time (s)

Time (s)

2.5

2.5

2.5

2.5

Redatumed CSG

True CSG at datum

y (km)

y (km)

y (km)

y (km)

3.5

3.5

3.5

3.5

0

0

0

0

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test


Fast 3d target oriented reverse time datuming

KM of RTD data

x (km)

x (km)

0

0

3.5

3.5

0

0

Z (km)

Z (km)

2.0

2.0

0

0

y (km)

y (km)

2

2

KM of original data

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test


Fast 3d target oriented reverse time datuming

KM of original data

KM of redatumed data

0

0

0

z (km)

z (km)

z (km)

2.0

2.0

2.0

3.5

3.5

3.5

x (km)

x (km)

x (km)

0

0

0

Velocity model

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test

( Inline No. 41 )


Fast 3d target oriented reverse time datuming

0

0

0

z (km)

z (km)

z (km)

2.0

2.0

2.0

3.5

3.5

3.5

x (km)

x (km)

x (km)

0

0

0

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test

KM of original data

KM of redatumed data

Velocity model

( Inline No. 101 )


Fast 3d target oriented reverse time datuming

0

0

0

z (km)

z (km)

z (km)

2.0

2.0

2.0

2.0

2.0

2.0

y (km)

y (km)

y (km)

0

0

0

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test

KM of original data

KM of redatumed data

Velocity model

( Crossline No. 161 )


Fast 3d target oriented reverse time datuming

0

0

0

z (km)

z (km)

z (km)

2.0

2.0

2.0

2.0

2.0

2.0

y (km)

y (km)

y (km)

0

0

0

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test

KM of original data

KM of redatumed data

Velocity model

( Crossline No. 201 )


Fast 3d target oriented reverse time datuming

0

0

0

y (km)

y (km)

y (km)

2.0

2.0

2.0

3.5

3.5

3.5

x (km)

x (km)

x (km)

0

0

0

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test

KM of original data

KM of redatumed data

Velocity model

( depth: z=1.4 km )


Fast 3d target oriented reverse time datuming

0

0

0

y (km)

y (km)

y (km)

2.0

2.0

2.0

3.5

3.5

3.5

x (km)

x (km)

x (km)

0

0

0

Motivation

Numerical Tests

Theory

Conclusions

3D SEG/EAGE test

KM of original data

KM of redatumed data

Velocity model

( depth: z=1.5 km )


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Outline

  • Motivation

  • Theory

  • Numerical Tests

2-D SEG/EAGE salt model

3-D SEG/EAGE salt model

3-D field data

  • Conclusions


Fast 3d target oriented reverse time datuming

Interval velocity model

km/s

0

5.5

Z (km)

8.0

0

y (km)

12

x (km)

6.0

0

1.5

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

OBC geometry:

50,000 shots

180 receivers per shot

Datum depth:

1.5 km

RVSP Green’s functions:

5,000 shots

180 receivers per shot


Fast 3d target oriented reverse time datuming

Redatumed CSG

Original CSG

0

0

Time (s)

Time (s)

6.0

6.0

y (km)

y (km)

4.5

4.5

0

0

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test


Fast 3d target oriented reverse time datuming

x (km)

0

12

KM of original data

0

Z (km)

8

KM of redatumed data

0

0

y (km)

5

Z (km)

8

0

12

y (km)

x (km)

5

0

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Z (km)

Z (km)

8.0

8.0

0

0

X (km)

X (km)

12

12

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Inline No. 21 )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Z (km)

Z (km)

8.0

8.0

0

0

X (km)

X (km)

12

12

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Inline No. 41 )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Z (km)

Z (km)

8.0

8.0

0

0

X (km)

X (km)

12

12

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Inline No. 61 )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Z (km)

Z (km)

8.0

8.0

0

0

Y (km)

Y (km)

5.0

5.0

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Crossline No. 41 )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Z (km)

Z (km)

8.0

8.0

0

0

Y (km)

Y (km)

5.0

5.0

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Crossline No. 61 )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Z (km)

Z (km)

8.0

8.0

0

0

Y (km)

Y (km)

5.0

5.0

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Crossline No. 81 )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Y (km)

Y (km)

5.0

5.0

0

0

X (km)

X (km)

12

12

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Depth 2.0 km )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Y (km)

Y (km)

5.0

5.0

0

0

X (km)

X (km)

12

12

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Depth 2.5 km )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

0

0

Y (km)

Y (km)

5.0

5.0

0

0

X (km)

X (km)

12

12

Motivation

Numerical Tests

Theory

Conclusions

3D Field Data Test

( Depth 4.0 km )

KM of original data

KM of RTD data


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Computational Costs


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Outline

  • Motivation

  • Theory

  • Numerical Tests

2-D SEG/EAGE salt model

3-D SEG/EAGE salt model

3-D field data

  • Conclusions


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Conclusions

  • 2-D numerical test

KM of RTD achieved image quality comparable to RTM at much lower cost.

  • 3-D numerical test

3-D RTD is implemented for synthetic and GOM data at acceptable computational cost;

Apparent improvements in mage quality are achieved compared to KM image of original data.

  • Future application

Subsalt least suqares migration and migration velocity analysis


Fast 3d target oriented reverse time datuming

Acknowledgements

  • Dr. Gerard Schuster and my committee members: Dr. Michael Zhdanov, Dr. Richard D. Jarrard for their advice and constructive criticism;

  • UTAM friends:

  • Dr. Xiang Xiao, Weiping Cao, and Chaiwoot Boonyasiriwat for their help on my thesis research;

  • Ge Zhang for his experiences on field data processing;

  • Dr. Sherif Hanafy, Shengdong Liu, Naoshi Aoki and all other UTAM members for their support in my life and work;

  • CHPC for the computation support.


Fast 3d target oriented reverse time datuming

Thanks!


Fast 3d target oriented reverse time datuming

km/s

Velocity model

0

0

0

0

Common shot gather

4.5

Time (s)

z (km)

z (km)

z (km)

1.5

2.0

2.0

2.0

4.0

x (km)

x (km)

x (km)

x (km)

8.0

8.0

8.0

8.0

0

0

0

0

KM image

RTM image

Motivation

Numerical Tests

Theory

Conclusions

Motivation


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Theory

Traditional reverse time datuming

d(s|r)

S

R

x’’

x’


Fast 3d target oriented reverse time datuming

d(s|x’’)

g*(r|x”)

d(s|r)

d(s|x”)=

Motivation

Numerical Tests

Theory

Conclusions

Theory

Reverse time Datuming

S

R

x’’

x’


Fast 3d target oriented reverse time datuming

g*(r|x”)

d(s|r)

d(s|x”)=

d(x’|x’’)

Motivation

Numerical Tests

Theory

Conclusions

Theory

Reverse time Datuming

S

R

d(x’|x”)=g*(s|x’) d(s|x”)

x’’

x’


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Theory

Target-oriented RTD

(Luo , 2006)


Fast 3d target oriented reverse time datuming

g(r|x”)

g(s|x’)

d(s|r)

*

= d(x’|x’’)

Motivation

Numerical Tests

Theory

Conclusions

Theory

Target-oriented RTD

(Luo , 2006)


Fast 3d target oriented reverse time datuming

g(r|x")

g(s|x’)

d(s|r)

*

= d(x’|x’’)

Motivation

Numerical Tests

Theory

Conclusions

Theory

Target-oriented RTD

(Luo , 2006)


Fast 3d target oriented reverse time datuming

Green’s functions: Time domain to frequency domain

Reverse time datum for different frequency

Sum over frequency

Redatumed data: frequency domain to time domain

Motivation

Numerical Tests

Theory

Conclusions

Workflow

Compute VSP Green’s functions in time domain

Original data: time domain to frequency domain


Fast 3d target oriented reverse time datuming

Reciprocity: RVSP =>VSP

Green’s functions: FFT: time domain => frequency domain

Crosscorrelation: Green’s functions with original data

Sum over frequency

IFFT: frequency domain => time domain

Redatumed data

Motivation

Numerical Tests

Theory

Conclusions

Workflow

FD: Compute RVSP Green’s functions

Original data: FFT: time domain =>frequency domain


Fast 3d target oriented reverse time datuming

Motivation

Numerical Tests

Theory

Conclusions

Conclusions

Benefits:

  • Reduce defocusing effects for subsalt imaging

  • Closer to the target: better resolution

  • Bottom-up strategy: computational efficiency

  • Redatumed data can be used by LSM & MVA

Limitations:

  • Extra I/O for accessing Green’s functions


  • Login