1 / 22

2008

2008. First-principle study of thin metallic films annealed on crystalline «high- к » oxide. Fabien Fontaine-Vive Pierre-Yves Prodhomme Philippe Blaise. LN3M project "Multi-scale software for material modelling". CEA LETI-MINATEC. Fabien Fontaine-Vive.

manjit
Download Presentation

2008

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2008 First-principle study of thin metallic films annealed on crystalline «high-к» oxide Fabien Fontaine-Vive Pierre-Yves Prodhomme Philippe Blaise Presentation name - Speaker name

  2. LN3M project"Multi-scale software for material modelling" CEA LETI-MINATEC Presentation name - Speaker name Fabien Fontaine-Vive

  3. Simulating electronic nanodevices A multi-scale approach from ab-initio to Monte-Carlo is needed MOS 45nm TEM image by A.M. Papon (Léti-MINATEC) Presentation name - Speaker name Fabien Fontaine-Vive

  4. MOS transistor evolution in microelectronics • Downscaling limitation: Leakage current due to tunneling effect => replacing SiO2 by high-k (high permittivity) dielectric HfO2 • BUT unpredictable threshold voltage of the metal gate beyond Schottky model => • First approach, oxide “pin” the metal Fermi level • - Surface states (Bardeen1) • - MIGS (Metal Induced Gap States) (Louie2, Hobbs3) • - surface defects, charge trap (Spicer4) • The distribution of the gap states is characteristic of the oxide, ONLY ! 1 Phys. Rev., (1947), 71, 717 2 Phys. Rev. B, (1977), 15, 2154 3 IEEE Trans. Elect. Devices, (2004), 51, 971 4 J. Vac. Sci. Tec., (1979), 16, 1422 5 Phys. Rev. Lett., 1984, 52, 461 6 Phys. Rev. B, 2006, 74 • Not sufficient, realistic simulations => depend on interfacial dipoles • Interface structure (Tung5) • - surface stoechiometry (Fonseca6) Presentation name - Speaker name Fabien Fontaine-Vive

  5. Experimental inputs W on HfO2 X-Ray Diff. by S. Allegret (Léti-MINATEC) Presentation name - Speaker name Fabien Fontaine-Vive

  6. Construction of the metal-oxide interfacial supercell, two approaches: • stacking arbitrary crystalline surfaces together, suitable for close crystallographic arrangement Ex: cubic metal staking on cubic oxide Cubic metal crystal = + Supercell relaxation Cubic HfO2 Fmax ~ 0.05-0.1 eV/A But ! How stacking different crystalline phases like a cubic phase stacking on a monoclinic highk oxyde m-HfO2 Presentation name - Speaker name Fabien Fontaine-Vive

  7. Epitaxial approach: depositing metal atoms on the oxide surface, thermal annealing T -> 0 K N atoms of metal N relaxation, N*1ps Vo= -Vz.z = Monoclinic HfO2, Surface orientation 001 z Relaxed interface structures (very small Fmax, < 0.01 eV/A), with the previous method, Fmax > 5 eV/A Presentation name - Speaker name Fabien Fontaine-Vive

  8. on 2 types of m-HfO2 substrate 2 types of metal Matching surfaces: Small misfit for W bcc 110 oriented surface (3*a,1*b) on m-HfO2 001 surface (3*a, 1*b) body centred cubic (bcc) W && hexagonal compact (hcp) Ti Monoclinic HfO2 c Monoclinic supercell Orthorhombic supercell vacuum vacuum b a 2 slabs of (3a,1b) m-HfO2 001 Supercell: α=90 deg, β=90, γ=90 Supercell parameters: α=90 deg, β=99.25, γ=90 Presentation name - Speaker name Fabien Fontaine-Vive

  9. Deposition of W atoms on m-HfO2 inorthorhombic supercell Why ab-initio ? * Creation / rupture of bonds (ionic, covalent, hydrogen ….) => suitable for inorganic materials (but also for organic, bio….) * Parameter-free * Very powerful method to predict properties of crystalline systems Preferable positions for metal atoms (W & Ti): Hafnium sites Relaxation engine: ab-initio (DFT) molecular dynamics combined with thermal annealing, 1-2 picosec for each deposition SIESTA code, LDA, Ceperley-Alder functional, Trouiller-Martins pseudopotentials, DZP orbitals Presentation name - Speaker name Fabien Fontaine-Vive

  10. Deposition of thin films of 4 metallic layers Ex: hcp 110 phase of Hafnium On m-HfO2 001, in monoclinic supercell, films of W and Ti are hexagonal compact-like, 110 oriented W Ti On m-HfO2 001, in orthorhombic supercell, films of W and Ti are hexagonal-diamond-like, 110 oriented Presentation name - Speaker name Fabien Fontaine-Vive

  11. Relaxing cell parameters of (W/HfO2) W hcp-like 110 on m-HfO2 001 W bcc 111 on ~ortho-mono HfO2 Phase transition W hex-dia 110 on m-HfO2 001 W hex-dia 110 on m-HfO2 001 No phase transition Presentation name - Speaker name Fabien Fontaine-Vive

  12. Relaxing cell parameters of (Ti/HfO2) No phase transition Stability of the (metal/HfO2) interfaces = stability of the metal Presentation name - Speaker name Fabien Fontaine-Vive

  13. Interfacial structures and energies of W/HfO2 4 types of construction, 4 types of relaxed interfaces (T=0K) 1 monolayer W_hd + 3 ML W_bcc 110 / m-HfO2 001 4ML W_hd 110 / m-HfO2 001 4ML W_hcp 110 / m-HfO2 001 4ML W_bcc 111 / ~o-mHfO2 001 Stack energy (eV) bcc/o+14.7 bcc/o+9.9 bcc/o bcc/o+6.8 Formation energies of metal bulk structures (eV/atom) bcc+0.77 bcc+0.47 bcc = -12.55 Surface energy of metal films (eV/atom) hcp 110=0.21 hd 110=0.03 bcc 111=0.16 Tri~tetra (2Hf-O-1W) Tri (2Hf-O-1W) Octa (4W-O-2Hf) Tri (2Hf-O-1W) Tetra (2Hf-O-2W) Tri (2Hf-O-1W) ~Tetra (2Hf-O-2W) ~Tri (2Hf-O-1W) Interfacial layer structure Interfacial energies (eV) hd + 2.61 hd = -14.96 hd + 2.10 hd + 3.75 Presentation name - Speaker name Fabien Fontaine-Vive

  14. Interfacial structures and energies of Ti/HfO2 4ML Ti_hd 110 / m-HfO2 001 4ML Ti_hcp 110 / m-HfO2 001 Stack energy (eV) hcp/m hcp/m+1.1 Formation energies of metal bulk structures (eV/atom) hcp = -7.48 hcp+0.03 Surface energy of metal films (eV/atom) hcp=0.17 hd=hcp Octa (4Ti-O-2Hf) Tri (2Hf-O-1Ti) Tetra (2Hf-O-2Ti) Tri (2Hf-O-1Ti) Interfacial layer structure Interfacial energies (eV) hcp = -21.17 hcp+3.66 Presentation name - Speaker name Fabien Fontaine-Vive

  15. Crystallographic compatibilities ? Monoclinic HfO2 c b a W hcp 110 / m-HfO2 001 W bcc 111 / o-mHfO2 W hd 110 / m-HfO2 001 Interfacial structure W / HfO2 (and Ti / mHfO2) Interfacial structure mHfO2 (001) / mHfO2 (001) Tetragonal (2Hf-O-2Hf) +Trigonal (2Hf-O-1Hf) ~Tetra (2Hf-O-2W) ~Tri (2Hf-O-1W) Tetra (2Hf-O-2W) Tri (2Hf-O-1W) Octa (4W-O-2Hf) Tri (2Hf-O-1W) Presentation name - Speaker name Fabien Fontaine-Vive Fabien Fontaine-Vive

  16. Crystallographic compatibilities ? Monoclinic HfO2 XRD Thermal annealing c b a Without thermal annealing Interfacial structure WNx / mHfO2 Interfacial structure mHfO2 (001) / mHfO2 (001) W2N / mHfO2 WN hex 110 / mHfO2 001 Presentation name - Speaker name Fabien Fontaine-Vive Fabien Fontaine-Vive

  17. Valence Band Offset and metal work function W/HfO2 1 monolayer W_hd +3 ML W_bcc 110 / m-HfO2 001 4ML W_hcp 110 / m-HfO2 001 4ML W_hd 110 / m-HfO2 001 4ML W_bcc 111 / o-HfO2 001 Band alignement method of Van de Walle & Martin + Many-body (GW) corrections (ABINIT code) VBO exp = 3.4 eV, (P+) VBO=4.0 eV (N+) VBO=3.5 eV (P+) Wf bcc 111 exp = 4.5 eV Wf bcc 110 exp = 5.2 Wf bcc on HfO2 exp= 5.0 (P+) Vacuum work function of metallic films (eV) Wf bcc 110 calc = 5.1 Wf hcp 110= 4.1 For Titanium, Wf = 3.4 Wf hd 110=4.4 For Ti Wf = 4.1 Polymorphism (or/and poly-orientation! ) of the metallic films could explain the wide range of work functions Presentation name - Speaker name Fabien Fontaine-Vive

  18. Electronic properties of W/HfO2 and Ti/HfO2 interfaces surface of isodensity at the Fermi level (HOMO density) W Ti HfO2 Charge transfer at the metal/oxide interface due to evanescent metal wavefunctions in the oxide => creation of interfacial dipole Presentation name - Speaker name Fabien Fontaine-Vive

  19. Interface Ti / W / m-HfO2: stabilizing meta-stable phases ? 2 ML Ti_hcp 1 ML Ti_hcp + 1ML Ti_bcc Phase transition 4 ML W_hcp 4 ML W_bcc 1 ML o-HfO2 2 ML m-HfO2 1 ML m-HfO2 Natural phases, not natural phases 1 ML Ti_hcp + 2ML Ti_bcc 3 ML Ti_hcp Phase transition 3 ML W_bcc + 1ML W_hcp 4 ML W_hcp 2 ML m-HfO2 2 ML m-HfO2 Presentation name - Speaker name Fabien Fontaine-Vive

  20. These meta-stable phases exist in reality ? For W, transition phase bcc -> double hcp at P > 6.5 Mbar Ruoff et al., PRB, 1998 Titanium metal at high pressure: Synchrotron experiments and ab initio calculations Rajeev Ahuja et al., PRB 2004 hcp -> (Temperature) ω -> bcc transition phase under pressure Growth of face-centred-cubic titanium on aluminium (fcc) S K Kim et al., J. Phys. Cond. Matt., 1996 Presentation name - Speaker name Fabien Fontaine-Vive

  21. Substrate HfOx (O-rich), deposition of Ti atom Formation of TiO2 octahedral structure Presentation name - Speaker name Fabien Fontaine-Vive

  22. Conclusion on metal-oxide interfaces • Metal-oxide interfaces = key-lock structure => ab-initio can design • Ab-initio thermal annealing favors the apparition of meta-stable interfaces and relaxing cell dimensions favors the way back to the metal natural phase (depend on the thickness metal/oxide) • Real interface with high-k oxide monoclinic HfO2 = • after the first atomic layer deposition => metal sites = Hafnium sites (=> ms-film in hexagonal structure, metal orientation determined by the oxide orientation) • structure of upper films determined by the deposition techniques • stability of interfacial films depend on the degree of incommensurability between metal and oxide. In W/HfO2, a possible coexistence of W bcc 111 (+1-2 monolayer of o-HfO2) and W bcc 110 (+m-HfO2) • MO electronic properties and interactions determined on 2 monolayers Presentation name - Speaker name Fabien Fontaine-Vive

More Related