1 / 33

TRIPOLI-4.6

Absorbers, Actinides and Compounds in FENDL-3 J-Ch Sublet EURATOM/CCFE Fusion Association Culham Centre for Fusion Research, Abingdon, United Kingdom. TRIPOLI-4.6. Monte Carlo pointwise base libraries JENDL-3.3, JENDL-AC JEFF-3.1, JEFF-3.1.1 ENDF/B-VI r8, ENDF/B- VII

malina
Download Presentation

TRIPOLI-4.6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Absorbers, Actinides and Compounds in FENDL-3J-Ch SubletEURATOM/CCFE Fusion Association Culham Centre for Fusion Research, Abingdon, United Kingdom CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

  2. TRIPOLI-4.6 • Monte Carlo pointwise base libraries • JENDL-3.3, JENDL-AC • JEFF-3.1, JEFF-3.1.1 • ENDF/B-VI r8, ENDF/B- VII • New evaluations: ENDF/B-VIIa, BRC-2009, … • ICSBEP benchmarking • 100 selected benchmarks = 25 days x 8 cpu x 1.5 Ghz SPARC Sun CPU for S.D. ~ 10 pcm, simply not possible without multi-processing capabilities, x10 cpu’s is a good start but x100 only allow scooping studies.. • Code benchmarking • With TRIPOLI-4.6, 293.6K pointwise data and CALENDF probability tables in the URR for every isotopes that contain one (cross check with MCNP, TART, VIM, COG, …)

  3. NJOY, CALENDF, and TRIPOLI Processing • NJOY99-296 • Pointwise data • CALENDF 2005-69 • Probability table in the URR on a 11276 groups structure unnecessary, 617 (50 bins per decade) is more than enough • TRIPOLI-4.6 • Angular distribution file • Processing comments • All files with full photon emission MF-6,13,14 and 12-15 (18) • MT=5 threshold changed not to start at the ur-urr boundary • Pu238, unresolved-smooth overlap • Some problems in the new PURR • Insufficient storage for photon production, in neutron-gamma production mode for MCNP

  4. Libraries • JEFF-3.1 reference library • JEFF-3.1.1 (isotope replaced in JEFF-3.1, incremental) • Ca46 Cr52 Eu154 I127 Ir191 Mo95 O16 Pm148 Rh103 • Tc99 Zr91 Zr96 Cl35 Cs135 Fe56 I129 Ir193 Np237 • Pm147 Pu239 Ru103 U233 Zr93 • New O16 (n,a) important for fusion technology • BRC-2009 (isotopes replaced in JEFF-3.1.1) Eh= 30 Mev • Am241 • Pu238 Pu239 Pu240 • U235 U236 U237 U238 U239

  5. TRIPOLI-4.6 – ICSBEP’s Fast range

  6. TRIPOLI-4.6 - ICSBEP’s Fast range U-235 not U-238 Pu240 not Pu239 JEFF-3.1.1 is not good on Godiva

  7. TRIPOLI-4.6 - ICSBEP’s Fast range • Fast range changes, but below 1 Mev  +830 to -134 pcm • U-238 capture decrease, KeV to 1 Mev, inelastic levels • U-235 (n,n’) levels and angular distribution, important • Pu240 Nu total, ~ - 3.5%

  8. TRIPOLI-4.6 - ICSBEP’s thermal range O-16 for JEFF-3.1.1 (n,a) changes is important for fusion, else no impact for BRC-2009

  9. TRIPOLI-4.6 - ICSBEP’s thermal range, U

  10. TRIPOLI-4.6 - ICSBEP’s thermal range, U • Thermal eV , intermediate Kev ranges (Hiss, Topsy) • U-235 Nu total, urr in MF-3 with LSSF=1, JEFF-3.1.1 = ENDF/B-V r8 • U-235 first’s (n,n’) levels

  11. TRIPOLI-4.6 - ICSBEP’s thermal range Pu

  12. TRIPOLI-4.6 - ICSBEP’s thermal range, PU

  13. TRIPOLI-4.5 - ICSBEP’s thermal range, Pu • thermal range, Pu • JEFF-3.1.1 “thermal” only MF-2 changes • Subtle Pu’s, not all is Pu239 driven in the ICSBEP

  14. TRIPOLI-4.5 - ICSBEP’s thermal range, solutions

  15. TRIPOLI-4.6 - ICSBEP’s thermal range, solutions No impact whatsoever !! Too “coarse” benchmarks ??

  16. Am-241 capture, 293.6K pendf comparison

  17. Probability tables in the URRimpact on Monte Carlo benchmarking CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

  18. PT’s impact on the ICSBEP benchmarks Excellent way to test the influence of the URR

  19. PT’s impact on the ICSBEP benchmarks Excellent way to test the influence of the URR The URR range impact significantly the results

  20. PT’s impact on the ICSBEP benchmarks • Probability table treatment in the URR is important • Probability tables impact the URR range and below • Thermal benchmarking are not impacted whatever the fuel mixture and enrichment: LCT’s, Thermal solutions, etc… • Fast benchmarking are impacted most, but only if U-238 and Pu239, Pu240 are present in large quantities, not with U-235 • U238 20-150 Kev, U235 2.25-25 Kev • Pu239 2.5-30 Kev, Pu240 5.7-40 Kev • There is nothing to shield in the U-235 ur, this is not the case for many other isotopes, including absorbers and structural materials

  21. Absorbers for FENDL-3 CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

  22. Absorbers Ag, In, Cd, Hf and Gd • 47 Ag 107   51.83 • 109   48.16 • 49 In 113 4.29   • 115 95.71 • 48 Cd 106 1.25 • 108 0.89 • 110 12.49 • 111 12.80 • 112 24.13 • 113 12.22 • 114 28.73 • 116 7.49 72 Hf 174 0.16 176 5.26 177 18.60 178 27.28 179 13.62 180 35.08 64 Gd 152 0.20 154 2.18 155 14.80 156 20.47 157 15.65 158 24.84 160 21.86

  23. Proposal for FENDL-3 • ENDF/B-VII • Ag, Cd, Hf • Better URR, high energy ranges, photon production • JEFF-3.1.1 • In • Slightly better RRR, else very similar • JEFF-3.2 beta • Gd’s • “New Gadolinium parameters assemblage and preliminary benchmarking “ • JEFFDOC-1210, 2008 • “Impact of New Gadolinium Cross Sections on Reaction Rate Distributions in 10 × 10 • BWR Assemblies” NSE 163, 17–25 -2009

  24. Background • Question marks on the Gd’s thermal and low energy cross sections involving resolved resonance parameters for all evaluations arising from Naval Propulsion, BWR, and specific experiments (PSI LWR-Proteus svea96+, AECL ZED-2, …) feedbacks … JEFF-3.1 evaluation  NUCLEAR SCIENCE AND ENGINEERING:154,261–279 (2006) Neutron Capture and Total Cross-Section Measurements and Resonance Parameters of Gadolinium G. Leinweber,*D.P. Barry, M.J. Trbovich, J.A. Burke, N.J. Drindak, H.D. Knox, R.V. Ballad And R.C. Block,Y. Danon, and L.I. Severnyak ”Atlas of Neutron Resonances”, S.F. Mughabghab March, 2006 (BNL)

  25. Assemblage • With JEFF-3.1 (based on JENDL-3.2) or ENDF/B-VII ?? • 64-Gd-157 NEA RCOM-JUN82 E. MENAPACE ET.AL. • RRR 215 eV (56 resonances) – no URR in MF-2 • 64-Gd-157 BNL,ORNL+EVAL-APR06 Rochman, Mughabghab, Leal, • Kawano+ • RRR 306 eV (56+4 resonances) – URR 55 keV • Resolved Resonance parameter sets rather similar but EMPIRE • model calculation, gamma production and covariance data are • available in ENBF/B-VII. It makes it an obvious choice, Sorry Enzo !! “Riposa in pace” old friend…

  26. Gd-157 thermal cross-section JEFF-3.1, ENDF/B-VII ENDF/B-VII + RPI 226000 +/-2260 1% G.LEINWEBER,ET.AL. (06) 213000 +/- 2000 0.9% R.B.TATTERSALL, (60) 264000 +/- 4500 1.7% N.J.PATTENDEN (58) 240000 +/-12000 5% L.V.GROSHEV,ET.AL. (62) 248000 +/- 4000 1.6% OHNO,ET.AL (68) Weighted average 226268 +/-1647

  27. ICSBEP benchmarking 64ppm - The HST-014 may be considered as unreliable but, they set the pace - The LCT-035 correspond to the LCT-006 JAERI TCA assembly, excellent trend and now agreement within the experimental uncertainty !!!

  28. Neutron thermal scattering data CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

  29. Is Thermal Scattering Important ? Oxygen free data Spectral Shift But without any thermal scattering, there would not be a thermal peak at all

  30. Why study Free and Bound Data Results? Thermal laws only extend up to 10 eV

  31. Log scaling is often deceptive Bound data shifts the thermal spectrum to higher energy

  32. JEFF-3.1.1 & ENDF/B-VII thermal data (23 in total) • ENDF/B-VII (20)JEFF-3.1 (9) • ZAID Temp. Nuclide ZAID Temp. Nuclide • sal.70t 293.6 13-Al • sfe.70t 293.6 26-Fe • mg.10t 20. 24-Mg • be.70t 296. Be metal bem.10t 293.6 Be metal • beo.70t 296. Be(BeO) • ccah2.10t 296. Ca(CaH2) • hcah2.10t 296. H(CaH2) • hwtr.70t 293.6 D(D2O) dd2o.10t 293.6 D(D2O) • poly.70t 296. H(CH2) hch2.10t 293.6 H(CH2) • lwtr.70t 293.6 H(H2O) hh2o.10t 293.6 H(H2O) • hzrh.70t 296. H(ZrH) hzrh.10t 293.6 H(ZrH) • obeo.70t 293.6 O(BeO) • ouo2.70t 296. O(UO2) • zrzrh.70t 296. Zr(ZrH) • benz.70t 296. Benzine • grph.70t 296. graphite cgra.10t 293.6 graphite • lmeth.70t 100. l-ch4 • dorth.70t 19. ortho-d • horth.70t 20. ortho-H • dpara.70t 19. para-d • hpara.70t 20. para-H • smeth.70t 22. s-ch4 • uuo2.70t 296. U(UO2) (Temp.=first temperature)

  33. Compound summary • NJOY99-304 (252) is up to the job for all processing, but not all MCNP version are, TRIPOLI also has limitation • The thermal data converge: JEFF-3.1 and ENDF/B-VII for H(H2O) • The thermal nuclear data, processing codes features and dials • have been significantly improved • New, better but not leaner JEFF-3.1 (9) and ENDF/B-VII (20) • thermal data libraries for Monte Carlo codes are available • Stay aware of the fact that there is more uncertainty in Monte • Carlo answers than the estimates of statistical uncertainty • printed out by the codes

More Related