Concepto
This presentation is the property of its rightful owner.
Sponsored Links
1 / 45

Concepto PowerPoint PPT Presentation


  • 40 Views
  • Uploaded on
  • Presentation posted in: General

Concepto.

Download Presentation

Concepto

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Concepto

Concepto

Según la estrategia de medidas repetidas, las unidades son observadas a lo largo de una serie reducida de intervalos de tiempo u ocasiones. En cada una de estas ocasiones de observación, el registro tomado del individuo puede ser una respuesta a un tratamiento previo o simplemente una medida conductual. ..//..


Concepto

En el primer caso se trata de un diseño experimental de medidas repetidas y en el segundo, de un diseño longitudinal observacional. A su vez, los N sujetos o unidades de observación pueden estructurarse, en subgrupos o estratos, de acuerdo con algún criterio de clasificación, como por ejemplo, los diseños de multimuestra o diseños split-plot.


Objetivos del dise o

Objetivos del diseño

En contextos no experimentales, como en investigación longitudinal, el interés por la estrategia intra radica en la posibilidad de disponer de un conjunto de puntuaciones o medidas de una variable, en dos o más puntos del tiempo. Por esta razón, dicha estrategia es conocida, más comúnmente, por diseño de medidas repetidas. ..//..


Concepto

Desde la perspectiva longitudinal, los datos de respuesta o medidas de la variable, objeto de estudio, de cada sujeto son función del tiempo y en consecuencia, el diseño de medidas repetidas se convierte en un instrumento apropiado para la modelación de las curvas de crecimiento y evaluación de los procesos de cambio en contextos evolutivos, sociales y educativos. ..//..


Concepto

De este modo, los diseños de medidas repetidas, en sus diferentes modalidades, permiten estudiar los procesos, inherentemente, longitudinales como los de crecimiento (curvas de crecimiento) y de cambio (perfiles). La estrategia de medidas repetidas es un procedimiento de estudio idóneo, cuando el investigador se propone analizar las tendencias que presentan los datos en función del tiempo (Bock, 1975; Stevens, 1986).


Efectos secundarios

Efectos secundarios

El carácter específico de la estructura de medidas repetidas, dentro el contexto longitudinal, es tomar registros de los sujetos en una serie de puntos u ocasiones. Esta estrategia puede, también, utilizarse en situaciones menos vinculadas a un enfoque estrictamente longitudinal. ..//..


Concepto

Cuando, por ejemplo, interesa estimar la efectividad de una serie sucesiva de tratamientos o intervenciones, tiene que controlarse el efecto de los períodos de aplicación. En situaciones como éstas, los distintos tratamientos están directamente asociados a los períodos o puntos de aplicación. ..//..


Concepto

Es por ello que, de esta estructura, se derivan unos efectos secundarios, no pretendidos y ajenos a la propia evaluación de los tratamientos. Estos efectos, conocidos por efectos de orden, se dividen en dos categorías: efectos de período (period effects) y efectos residuales (carry-over effects) o efectos directamente vinculados a la propia temporalidad con que se aplican los tratamientos.


Control de los efectos secundarios

Control de los efectos secundarios

Se han planteado unos esquemas de investigación tendentes a neutralizar y estimar estos efectos. Entre estos esquemas se encuentran los diseños cruzados (cross-over), conocidos también por diseños alternantes o conmutativos, y los diseños intra-sujeto de Cuadrado Latino. ..//..


Concepto

El propósito de estos diseños es contrabalancear, a través de los sujetos o los grupos, las secuencias de tratamientos. Así mismo, es posible estimar, de forma precisa, el efecto del orden o secuenciación de los tratamientos. De este modo, no sólo se soslaya la posible confusión entre períodos y tratamientos, sino que es posible estimar su efectividad.


Dise o longitudinal de medidas repetidas clasificaci n

DISEÑO LONGITUDINAL DE MEDIDAS REPETIDAS. CLASIFICACIÓN

Diseño longitudinal antes y después (1G2O)

Diseño longitudinal de múltiples observaciones (1GMO)

Diseño de un solo grupo

Diseño longitudinal de medidas repetidas

Diseño de dos o más grupos

Diseño de dos grupos o split-plot (2GMO)


Concepto

Diseño de un grupo de sujetos


Dise o de medidas repetidas antes y despu s estudio del cambio

Diseño de medidas repetidas antes y después. Estudio del cambio


Definici n

Definición

Con frecuencia, en estudios longitudinales, se plantea como objetivo básico la medida del cambio entre dos ocasiones de observación. La estrategia seguida es la de medidas repetidas en su versión más simple, y el modelo de investigación es referido por diseño antes y después o diseño de un grupo y dos ocasiones de observación (1G2O). ..//..


Concepto

Según el formato del diseño, se toman de un mismo grupo de sujetos medidas antes y después, para evaluar el posible cambio habido entre las dos ocasiones de observación. Cambio que es atribuible a la administración de un tratamiento (diseño cuasi-experimental), o al paso del tiempo (diseño observacional). ..//..


Concepto

La diferencia entre estos diseños y los diseños de series temporales es que los diseños antes y después cuentan con una cantidad mínima de ocasiones de observación (sólo dos ocasiones) y una cantidad considerable de sujetos. En cambio, los diseños de series temporales, en su expresión más genuina, cuentan con una gran cantidad de observaciones y un número reducido de sujetos (frecuentemente un sólo sujeto).


Matriz de datos

Matriz de datos

La matriz de datos del diseño antes y después admite distintas disposiciones o formatos; lo cual, es extensible a las técnicas de análisis estadístico. ..//..


Concepto

Inicialmente, esta estructura de investigación, ha servido para evaluar el cambio en dos ocasiones de observación (como consecuencia de una intervención activa, por la ocurrencia de un hecho circunstancial externo o por el simple paso del tiempo). También, ha sido utilizada con propósitos distintos como cuando se compara el cambio entre grupos, se evalúan las correlaciones entre variables o se seleccionan sujetos.


Dise os longitudinales de medidas repetidas antes y despu s 1g20

Diseños longitudinales de medidas repetidas antes y después (1G20)

Formato general del diseño

Sujetos X Y d d2

totales:

medias:


Modelos de an lisis

MODELOS DE ANÁLISIS

Modelos condicionales

Modelos de análisis

Modelos incondicionales


Modelo condicional

Modelo condicional

El modelo condicional (conocido por modelo de la regresión), asume que las medidas de la primera ocasión son una variable fija (X1), y que se opera con la distribución de medidas de la segunda ocasión; es decir, se opera con la distribución de Y, para valores fijos de X1.


Concepto

El procedimiento más simple, para la modelación de los datos, es definir la regresión lineal de Y sobre X1, mediante la ecuación

Y = ß0+ ß1X1+

..//..


Concepto

donde ß0 es la intercepción de la línea, ß1 la pendiente, y  el término de error o conjunto de variables diferentes de X1 que actúan, de forma aleatoria, sobre Y. Se aplica el criterio de Mínimos Cuadrados Ordinarios (MCO) para la estimación de los parámetros del modelo.


Modelo incondicional

Modelo incondicional

Los modelos incondicionales -modelos referidos al tiempo-, especifican el cambio por las diferencias individuales y/o diferencias entre las medias de los grupos (diferencias netas). ..//..


Concepto

Cuando se define el cambio medio o cambio neto, , por la diferencia entre las medias de la variable observada en la segunda, Y, y primera ocasión, X, entonces

_ _ _

d = Y – X

..//..


Concepto

El cambio individual, que es el mayor atractivo de los datos longitudinales, se obtiene de la diferencia entre las puntuaciones antes y después para cada individuo.

d = Y – X


Ejemplo pr ctico

Ejemplo práctico

Se pretende estudiar el progreso en matemáticas de un grupo de escolares, en dos puntos del tiempo. Para ello, se registran las puntuaciones de escolares a final de la primera etapa de EGB (12 años) y se comparan con las puntuaciones del final de la segunda etapa de EGB (14 años). La tabla de datos muestra las puntuaciones de matemáticas de los escolares que participaron en el estudio.


Concepto

DISEÑO LONGITUDINAL ANTES Y DESPUÉS (1G2O)

Escolares

12 años (X)

14 años (Y)

D(diferencia)

D2

1

2

3

4

5

6

7

8

9

10

16

18

17

15

19

14

16

17

18

16

28

29

27

24

29

26

29

28

29

26

12

11

10

9

10

12

13

11

11

10

144

121

100

81

100

144

169

121

121

100

D = 109

D2 = 1201


Modelo condicional1

Modelo condicional


Concepto

El parámetro ß1 se estima por

XY – NXY

= ---------------------

(X)² – NX²

(166x275) – 10(4582)

= -------------------------------- = 0.833

(166)² – 10(2776)


Concepto

El parámetro ß0 se estima por

XXY –YX²

= -----------------------

(X)² – NX²

(166x4582) – (275x2776)

= ---------------------------------- = 13.67

(166)² – 10(2776)


Concepto

_ _

Y - ß1X = 27.5 - 0.833(16.6) = 13.67

El modelo teórico del cambio es como sigue,

= 13.67 + 0.833(Xi)


Significaci n el par metro

Significación el parámetro

Para probar la significación del valor estimado del parámetro del cambio, β1, se computa la variancia de Y con base a los residuales y la suma cuadrática de las desviaciones de X:

s² = e²i /(n – 2) = 12.329/8 = 1.54

y

_

x² = (Xi– X)² = 20.4

Con el estadístico t se prueba la hipótesis,

ß1 = 0.


Prueba t del par metro

Prueba t del parámetro

0.833

t = --------- = ------------------ = 3.03

s²/x²1.54/20.4

Este valor es significativo al 5% (t0.95(8) = 1.86).

El valor predicho para cada individuo es, según el modelo condicional, = 13.67 + 0.833Xi. De esta forma, es posible derivar las desviaciones asociadas a cada individuo (ei = Yi– ).


Desviaciones individuales del valor te rico obtenidas del modelo de la regresi n e j

Desviaciones individuales del valor teórico, obtenidas del modelo de la regresión (ej).


Concepto

ei = Yi(v.real) - i(valor teórico o predicho)

e1 = 28 - 13.67 + 0.833(16) = 1.002

e2 = 29 - 13.67 + 0.833(18) = 0.336

e3 = 27 - 13.67 + 0.833(17) = -0.831

e4 = 24 - 13.67 + 0.833(15) = -2.165

e5 = 29 - 13.67 + 0.833(19) = -0.497

e6 = 26 - 13.67 + 0.833(14) = 0.668

e7 = 29 - 13.67 + 0.833(16) = 2.002

e8 = 28 - 13.67 + 0.833(17) = 0.169

e9 = 29 - 13.67 + 0.833(18) = 0.336

e10 = 26 - 13.67 + 0.833(16) = -0.998

e² = 12.329


Modelo incondicional1

Modelo incondicional


Concepto

Según el modelo incondicional, el cambio neto es,

_ _ _

d = Y – X = 10.9

Para probar la significación de este cambio o valor, se aplica el estadístico t para datos relacionados.


Concepto

t Student para datos relacionados


Concepto

Cálculo del valor de t

NA(H0)

t0.95(9)=2.262


Resultado

Resultado

Bajo los dos modelos el cambio es significativo.

Según Plewis (1985), los modelos condicionales (o modelos de la regresión), son más apropiados que los modelos incondicionales para la medida del cambio, porque permiten tener en cuenta la dirección temporal y, al mismo tiempo, plantear cuestiones relativas a cómo el pasado puede influir en el presente o futuro.


Conclusiones

Conclusiones

El estudio del cambio constituye uno de los principales objetos de estudio, dentro del contexto psicológico, particularmente del área asociada al estudio del desarrollo. En su expresión más simple, el estudio del cambio se plantea en términos de un diseño donde los sujetos de la muestra son medidos en dos ocasiones separadas en el tiempo. ..//..


Concepto

El intervalo de tiempo entre las medidas, referidas por antes y después, depende de la naturaleza del estudio así como del objetivo de análisis.

Nótese que en esta clase de diseño, no se pretende examinar un proceso más o menos complejo, sino el cambio simple, en términos de diferencia o ganancia, que experimenta un grupo de sujeto como consecuencia del paso del tiempo.


  • Login