Dna damage protein expression and migration of melanoma cells irradiated with proton beam
Download
1 / 25

DNA damage, protein expression and migration of melanoma cells irradiated with proton beam - PowerPoint PPT Presentation


  • 80 Views
  • Uploaded on

DNA damage, protein expression and migration of melanoma cells irradiated with proton beam. M. Elas 1 , S. Kędracka-Krok 1 , U. Jankowska 1 , Ł. Skalniak 1 , J. Jura 1 , E.Zuba-Surma 1 , K. Jasińska 1 , A. Pawlak 1 , U. Sowa 2 , P. Olko 2 , B. Romanowska-Dixon 3 , K. Urbańska 1

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' DNA damage, protein expression and migration of melanoma cells irradiated with proton beam' - makani


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Dna damage protein expression and migration of melanoma cells irradiated with proton beam

DNA damage, protein expression and migration of melanoma cells irradiated with proton beam

M. Elas1, S. Kędracka-Krok1, U. Jankowska1, Ł. Skalniak1, J. Jura1, E.Zuba-Surma1, K. Jasińska1, A. Pawlak1, U. Sowa2,

P. Olko2, B. Romanowska-Dixon3, K. Urbańska1

1Faculty of Biochemistry, Biophysics and Biotechnology, JU

2Institute of Nuclear Physics, PAS

3Department of Ophthalmology and Ophthalmic Oncology,

Jagiellonian University Medical College


Methods cells irradiated with proton beam

BLM cells irradiated with 1-7 Gy of proton beam

58 MeV proton beam

AIC-144 cyclotron at Institute of Nuclear Physics, Polish Academy of Sciences, Kraków

LET <20 keV/µm

dose rate 0.15 Gy/s


Dose cells irradiated with proton beam-dependent slowing down of the proliferationrate

5 & 7 Gy lethal damage

1-3 Gy repair


Cell cells irradiated with proton beamcycleredistribution: Increasein G2/M with dose, day 6

G0&G1/G2&M

Increase in G2/M

>2n present


DNA damage cells irradiated with proton beam

dose-dependent DNA damage

2 daysafterirradiation: no difference

5 daysafter: 11% more for 3 Gy, 14% for 5 Gy, 17% for 7 Gy

=>delayedDNA damage


Caspases activity increases with time cells irradiated with proton beam

day 5

increase in caspases 3 and 7 activity with time


S91 cells irradiated with proton beam

S91 – day 9-10

S91 – day 5

3 Gy

3 Gy

Apoptotic Cells

Healthy Cells


Proteomics
Proteomics cells irradiated with proton beam

  • 2DE and mass spectroscopy to identifyproteinsinfluenced by 3 Gy proton beamirradiation

ctrl

3 Gy

Kędracka-Krok et al., Plos One, 2014


upregulated cells irradiated with proton beam

downregulated

13 up, 4 down

> 1.5 x

Nucleus

VCP

MVP

STRAP

FAB-2

Lamine A/C

GAPDH

Moesin

Actinin 4

FAB-2

Vimentin

Annexin 7

Lamine A/C

Lamine B

Cytoplasm

STRAP

MCM7

Annexin 7

MVP

Caprin-1

PDCD6

VCP

HSP70

P-body

PDCD6

Caprin-1

TIM, GAPDH

VCP

Stress

granule

Mitochodrium

Kędracka-Krok et al., Plos One, 2014


DNA cells irradiated with proton beamrepair, RNA regulation

VCP

MVP

STRAP

FAB-2

Lamine A/C

GAPDH

Nucleus

Moesin

Actinin 4

FAB-2

Vimentin

Annexin 7

Lamine A/C

Lamine B

Cytoplasm

STRAP

MCM7

Annexin 7

MVP

Caprin-1

PDCD6

VCP

MVP (1.9 ), LamineA/C (1.8 ), GAPDH(2.4 ) – DNA repair

VCP (1.9 ) – chromatinassociateddegradation

MVP – PTEN translocationregulation

MVP, VCP – transcriptionregulation

STRAP (4.1 ) , FAB-2(1.9 ) – mRNAregulation

Caprin-1 (1.9), PDCD6 (1.5 )– mRNAregulation

HSP70 & G3BP1 (1.8 ) – stress & mRNA stability and stress granule formation

PDCD6

P-body

Caprin-1

TIM, GAPDH

VCP

Stress

granule

Mitochodrium

Kędracka-Krok et al., Plos One, 2014


Cell cells irradiated with proton beamsurvival

VCP

MVP

STRAP

FAB-2

Lamine A/C

GAPDH

Nucleus

Moesin

Actinin 4

FAB-2

Vimentin

Annexin 7

Lamine A/C

Lamine B

Cytoplasm

STRAP

MCM7

Annexin 7

MVP

Caprin-1

PDCD6

VCP

STRAP (4.1 ) – survival - apoptosisbalance

MCM7 (1.6 )– proliferationbalance

Annexin 7(2.5 ) – proliferationinhibition

MVP – survivalenhancement

Caprin-1 (1.9) – proliferation

PDCD6 (1.5 )– apoptosis, ubiquitinationregulation

VCP (1.9 ) – aggregatesmanagement, lysosomaldegradation

PDCD6

P-body

Caprin-1

TIM, GAPDH

VCP

Stress

granule

Mitochodrium

Kędracka-Krok et al., Plos One, 2014


Cell cells irradiated with proton beammetabolism

VCP

MVP

STRAP

FAB-2

Lamine A/C

GAPDH

Nucleus

Moesin

Actinin 4

FAB-2

Vimentin

Annexin 7

Lamine A/C

Lamine B

Cytoplasm

STRAP

MCM7

Annexin 7

MVP

Caprin-1

PDCD6

VCP

TIM (2.4 ), GAPDH(2.4 ) – glycolysis

VCP(1.9 ) – mitochondria associateddegradation

PDCD6

P-body

Caprin-1

TIM, GAPDH

VCP

Stress

granule

Mitochodrium

Kędracka-Krok et al., Plos One, 2014


Cytoskeleton and cells irradiated with proton beammotility

VCP

MVP

STRAP

FAB-2

Lamine A/C

GAPDH

Nucleus

Moesin

Actinin 4

Fab-2

Vimentin

Annexin 7

Lamine A/C

Lamine B

Cytoplasm

STRAP

MCM7

Annexin 7

MVP

Caprin-1

PDCD6

VCP

Moesin(2.4 ) – actinremodelling, motility

Actinin 4 (1.9 ) – migration and metastasis

FAB-2 (1.9 ) – migration, microtubuledestabilizer

Vimentin (2.0, 2.1, 3.4, 1.6 ) –metastasis, EMT marker

Annexin 7(2.5 ) – motility

LamineA/C (1.6, 2,4, 1,5 ) – PI3K/AKT/PTEN, adhesion, motility

Lamine B (1.4 ) - motility

PDCD6

P-body

Caprin-1

TIM, GAPDH

VCP

Stress

granule

Mitochodrium

Kędracka-Krok et al., Plos One, 2014


Proteomics1
Proteomics cells irradiated with proton beam

  • 4 groups:

    • DNA repair & mRNAregulation

    • Survival and apoptosis

    • Glycolyticmetabolism

    • Cytoskeleton and migration

  • Signalingpathways:

    • p53

    • TGFβ

    • PTEN

    • AKT

    • BAX, Bcl-2

  • Kędracka-Krok et al., Plos One, 2014


    Interaction cells irradiated with proton beam with tumor microenvironment

    • Heavy ionsshown to inhibitmetastasis (Takahashi, 2003; Tsuboi, 2005)

    • After proton beamirradiation:

    • strongly inhibited matrix metaloproteinase-2 activity in highly aggressive HT1080 human fibrosarcomacells in vitro, and significantly decreased the number of pulmonary metastasis in mouse osteosarcoma in vivo (Ogata et al. 2005).

    • the expression level or activity of molecules related to metastasis such as αVβ3, β1 integrin, and MMP-2 (Takahashi, 2003)


    Angiogenesis cells irradiated with proton beamgeneactivation

    Real-time PCR analysis usinghuman angiogenesis TaqMan® Array Plates

    Blm cells, 3 Gy, 48 hrculture

    Genes with 1.5 change vs controlshown


    Migration cells irradiated with proton beamproperties of melanoma cellsafterprotonotherapy

    Blm, speed

    Omm1.3, speed

    Omm 1.3, distance

    Blm, distance


    Inhibition of metastases of eye implanted bhm melanoma
    Inhibition cells irradiated with proton beam of metastases of eye-implanted BHM melanoma

    10 Gy

    Romanowska et al., ABP, 2013


    Inhibition of metastases of eye implanted bhm melanoma1
    Inhibition of metastases of eye-implanted BHM melanoma cells irradiated with proton beam

    Rel mean diameter [mm]

    Time [days]


    WYNIKI cells irradiated with proton beam

    Inhibition of metastases of eye-implanted BHM melanoma

    x 4.4

    p=0.0052

    β-irradiation

    Romanowska et al., ABP, 2013


    Conclusions cells irradiated with proton beam

    • 1-3Gysublethal, 5-7 Gylethaldamage of BLM cells

    • Delayed DNA damage, leading to apoptosis, resulting from endogenous ROS generationdue to cellsignalling

    • Upregulation of proteinsinvolved in DNA repair and stress, apoptosis and survival, glycolyticmetabolism and migration and cytoskeleton

    • In the lattergroup, vimentin was heavilysuppressed, together with Annexin 7, whereasexpression of Moesin 7, Lamins A/C and B, Actinin 4 and FAB-2 wereincreased

    • Interaction with tumor microenvironment: Upregulation of angiogenicgenes, in vivo inhibition of metastases in BHM eye model


    Obrazowanie mysich guzów: mechanizm odpowiedzi na radio- i fototerapię

    MRI, angiografia ToF

    MRI, perfuzja ASL


    Dept of General fototerapięBiochemistry

    Jolanta Jura

    Łukasz Skalniak

    Agnieszka Cierniak

    Institute of Nuclear Physics, PAS

    Paweł Olko

    Jan Swakoń

    Urszula Sowa

    Marta Ptaszkiewicz

    Dept PhysicalBiochemistry

    Sylwia Kędracka-Krok

    Urszula Jankowska

    Dept Cell Biology

    Ewa Zuba-Surma

    Marta Michalik

    Dept of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College

    Bożena Romanowska-Dixon

    Dept Biophysics

    Krystyna Urbańska

    Katarzyna Jasińska

    Małgorzata Szczygieł

    Martyna Krzykawska-Serda

    Michał Gonet

    Agnieszka Drzał


    ODLEGŁE PRZERZUTY CZERNIAKA fototerapię

    Przerzuty do płucsą inicjowane u części zwierząt (37%)gdy guz pierwotny zajmuje zaledwie 0,10 powierzchni PK(już po 2 dniach wzrostu guza)


    Wczesne i p ne efekty radioterapii
    WCZESNE I PÓŹNE EFEKTY RADIOTERAPII fototerapię

    Całkowitej regresji guza po 10 Gy 125I (4,2,2,2) towarzyszy brak przerzutów w płucach u 50% leczonych chomików nawet po 70 dniach od enukleacji

    29 –34 dni po ENU

    Średnica guza (mm)

    100% zwierząt

    70 dni po ENU

    Czas (dni)

    50 % zwierząt

    (Sawow Aneta, 2001)


    ad