150 likes | 204 Views
Lesson 10 - QR. Summary of Sections 1 thru 4. Objectives. Review Hypothesis Testing Basics Testing On Means, μ , with σ known Z 0 Means, μ , with σ unknown t 0 Population Proportion, p, Z 0. Determining H o and H a.
E N D
Lesson 10 - QR Summary of Sections 1 thru 4
Objectives • Review Hypothesis Testing • Basics • Testing On • Means, μ, with σ known Z0 • Means, μ, with σ unknown t0 • Population Proportion, p, Z0
Determining Ho and Ha Ho – is always the status quo; what the situation is currently the claim made by the manufacturer Ha – is always the alternative that you are testing; the new idea the thing that proves the claim false
Four Outcomes from Hypothesis Testing decrease α increase β increaseα decreaseβ H0: the defendant is innocent H1: the defendant is guilty Type I Error (α): convict an innocent person Type II Error (β): let a guilty person go free Note: a defendant is never declared innocent; just not guilty
Three Ways – Ho versus Ha a b b a Critical Regions 1. Equal versus less than (left-tailed test) H0: the parameter = some value (or more) H1: the parameter < some value 2. Equal hypothesis versus not equal hypothesis (two-tailed test) H0: the parameter = some value H1: the parameter ≠ some value 3. Equal versus greater than (right-tailed test) H0: the parameter = some value (or less) H1: the parameter > some value
Hypothesis Testing • The process of hypothesis testing is very similar across the testing of different parameters • The major steps in hypothesis testing are • Formulate the appropriate null and alternative hypotheses • Calculate the test statistic • Determine the appropriate critical value(s) • Reach the reject / do not reject conclusions • Always put pieces into context of the problem
Using Your Calculator • Press STAT • Tab over to TESTS • Tests of μ(population mean) • For σ known -- Select Z-Test and ENTER • For σ unknown – Select T-Test and ENTER • Tests of p (population proportion) • Select 1-Prop Test and ENTER • Computed p-values can be directly compared to α • Computed test-statistic (z0 or t0) can be compared to appropriate critical value (gotten from tables)
Example from 10-2 Problem 28 on page 529: • a) The normality plot in the text shows that the data distribution appears normal.The box-plot of the data does not show any outliers, Assumptions Met. • H0: μ = 0 (Summer of 2000 average temperature does not differ from an average years temperature)Ha: μ > 0 (Summer of 2000 is hotter than usual)Since we have raw data, we need to enter our data (12 values) into L1 in our calculator before we attempt the hypothesis test. After we enter our data, we then go to z-test (because σ is given to us in the problem σ known)Calculator Input: Calculator Output: (of interest)μ0 : 0 σ : 1.8 z = 1.9245 List : L1 p = 0.02715 Freq : 1 > μ0
Example from 10-2 cont Problem 28 on page 529: b) Calculator output of interest:z = 1.9245 p = 0.02715P-Value Method: Compare p-value with α if p-value < α then Reject H0. 0.02715 < 0.05 therefore we reject H0 and conclude that this summer is hotter than normal.Classical Method: Compare z statistic with z critical (from table), if z0 > zc then we Reject H0. We look into the table for .95 and come up with a zc = 1.645 [or we use our calculator to find it invNorm(0.95) = 1.64485]. Since z0 > zc we reject H0.Confidence Interval Method: Since this is a right tailed test and not a two- tailed test, we would not use this method.
Example from 10-3 Problem 19 on page 539: • H0: μ = 40.7 (Average age of death-row inmates)Ha: μ ≠ 40.7 (Average age of death-row inmates has changed) Check requirements: SRS normality (have to assume because we only have summary data) outliers (same as above) Since we have only summary data, we can go directly to the hypothesis test. We use t-test (because σ is not given to us in the problem σ unknown). We have a two-tailed test (different) from the problem.Calculator Input: Calculator Output: (of interest)μ0 : 40.7 x-bar : 38.9 sx : 9.6 t = -1.0607 n : 32 p = 0.29704μ : ≠ μ0
Example from 10-3 cont Problem 28 on page 529: • Calculator output of interest: t = -1.0607 p = 0.29704 P-Value Method: Compare p-value with α if p-value < α then Reject H0. 0.29704 > 0.05 therefore we fail to reject H0 and conclude that we don’t have sufficient evidence to say the average of death-row inmates has changed.Classical Method: Compare t statistic with t critical (from table), if t0 > tc then we Reject H0. We look into the table for t0.025,31 and come up with a tc = 2.04. We add a negative sign to tc. Since t0 < tc we fail to reject H0. • Confidence Interval Method: We can use the formula below to figure out the lower (LB) and upper bounds (UB) to compare with x-bar. u0 +/- tc ∙ sx / n Or we can use our calculator, Stat Tests t-interval Enter the same data we had for the t-test before Calculator Output: (35.439, 42.361) Since μ0 lies in the interval, we fail to reject H0.
Example from 10-4 Problem 12 on page 551: • H0: p0 = 0.33 (American adults who believe in haunted houses)Ha: p > 0.33 (Percentage of American adults who believe in haunted houses has increased)Check requirements: SRS 1004 American adults < 0.05 of all American adults np(1-p) > 10 1004(0.33)(0.67) = 221.98 >> 10 Since we have a proportion problem, we need to use the 1-Prop ZTest in our calculator. We are doing a right tailed test (% has increased).Calculator Input: Calculator Output: (of interest) p0 : 0.33 x : 370 z = 2.596 n : 1002 p = 0.0047 prop : > p0
Example from 10-4 cont Problem 12 on page 551: • Calculator output of interest: z = 2.596 p = 0.0047 P-Value Method: Compare p-value with α if p-value < α then Reject H0. 0.0047 < 0.05 therefore we reject H0 and conclude that the percentage of American adults who believe in haunted houses has increased.Classical Method: Compare z statistic with z critical (from table), if z0 > zc then we Reject H0. We look into the table for .95 and come up with a zc = 1.645 [or we use our calculator to find it invNorm(0.95) = 1.64485]. Since z0 > zc we reject H0. Confidence Interval Method: Since this not a two tailed test, we normally would not use this method.
Summary and Homework • Summary • We can test whether sample data supports a hypothesis claim about a population mean, proportion, or standard deviation • We can use any one of three methods • The classical method • The P-Value method • The Confidence Interval method (two-tailed tests) • The commonality between the three methods is that they calculate a criterion for rejecting or not rejecting the test statistic • Homework • pg 511-513; 1, 2, 3, 7, 8, 12, 13, 14, 15, 17, 20, 37