1 / 30

Physics Motivations Sensitivity of observables Experimental issues Beam tests results

Prospects for GPD studies at COMPASS E. Burtin CEA-Saclay Irfu/SPhN On b ehalf of the COMPASS Collaboration CERN , March 4th, 2010. Physics Motivations Sensitivity of observables Experimental issues Beam tests results. g *. g , p,r. hard. x+ . x- . soft. GPDs. P. P’. t.

mab
Download Presentation

Physics Motivations Sensitivity of observables Experimental issues Beam tests results

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Prospects for GPD studiesat COMPASSE. Burtin CEA-Saclay Irfu/SPhNOnbehalfof the COMPASS CollaborationCERN , March 4th, 2010 Physics Motivations Sensitivity of observables Experimental issues Beam tests results

  2. g* g,p,r hard x+ x- soft GPDs P P’ t for quarks : 4 functions H,E,H,E(x,,t) ~~ Generalized Parton Distributions Factorisation: Q2 large, -t<1 GeV2 contains pdf H(x,0,0) = q(x) measured in DIS Generalized Parton Distributions contains form factors measured in elastic scattering contains information on the nucleon spin : Ji’s sum rule :

  3. *  Q² x+ x- p GPDs t 3-Dpartonic structure of the nucleon (Pz,ry,z) Hard Exclusive Scattering Deeply Virtual Compton Scattering ep ep p z x P r y x boost GPDs : H( x,,t ) Fourier (=0) access to correlations : ( Px, ry,z) Burkardt,Belitsky,Müller,Ralston,Pire

  4. What makes Compass unique ? • CERN High energymuonbeam • 100 - 190 GeV • 80% Polarisation • μ+andμ-available • Opposite polarization Luminositylimit Foreseen program : DVCS and mesonproduction off a liquidH2 target (unpolarized) • Will explore the intermediate • xBjregion • Uncoveredregionbetween • ZEUS+H1 and HERMES+Jlab xBj Gluon, sea and valence quarks

  5. μ’ * θ μ p  Comparison of BH and DVCS at 160 GeV DVCS : Bethe-Heitler : x=0.01 x=0.04 x=0.1    BH dominates BH and DVCS at the samelevelDVCS dominates excellentaccessDVCS amplitude studyofdDVCS/dt referenceyieldthrough the interference

  6. Known expression μ’ * θ μ p φ Azimuthal angular dependence analysis from Belitsky, Kirchner, Müller : polarized beam off unpolarized target dσ(μpμp) = dσBH + dσDVCSunpol + PμdσDVCSpol + eμ aBHRe ADVCS + eμ PμaBHIm ADVCS Pμ eμ eμPμ Twist-2 M11 >> Twist-3 M01 Twist-2 gluon M-11

  7. μ’ * θ μ p φ Angular dependence analysis Case of COMPASS :μ+(P=-0.8) and μ-(P=+0.8) unpolarized H2target DU,CS : dσμ+- dσμ-= 2 PμdσDVCSpol+ eμaBHRe ADVCS => Re(F1H) SU,CS :dσμ++ dσμ-= 2(dσBH+dσDVCSunpol) + 2eμ PμaBHIm ADVCS => dσ/dt => Im (F1H)

  8. FromSU,CS : t-slope measurement Using SU,CS : dDVCS / dt ~ exp(-Bt) B ~ ½ <r2> Assuming 3% systematicerror on BH Ansatzatsmall x :B(x) = b0 + 2 α’ ln(x0/x)α’ =0.125 GeV-2 (FFS) 160 GeVmuon beam 2.5m LH2 target 2 years L = 1222 pb-1 εglobal = 10 % 1 < Q2 < 8 GeV2 3 σ slope measurement for : α’ > 0.30 (ECAL 1+2 ) α’ > 0.16 (ECAL 0+1+2)

  9. μ’ * θ μ p φ Angular dependence analysis Case of COMPASS :μ+(P=-0.8) and μ-(P=+0.8) unpolarized H2target DU,CS : dσμ+- dσμ-= 2 PμdσDVCSpol+ eμaBHRe ADVCS => Re(F1H) SU,CS :dσμ++ dσμ-= 2(dσBH+dσDVCSunpol) + 2eμ PμaBHIm ADVCS => dσ/dt => Im (F1H)

  10. μ’ * θ μ p φ DU,CS : Beam Charge & Spin Difference DU,CS : dσμ+- dσμ-= 2 PμdσDVCSpol+ eμaBHRe ADVCS 160 GeVmuon beam 2.5m LH2 target 2 years L = 1222 pb-1 εglobal = 10 % Bj => Re(F1H)

  11. BCSA() over the kinematical domain 4 < Q2 < 8 BCSA = DU,CS /SU,CS Points: VGG predictionPhys. Rev. D60:094017,1999 Statisticalerrorsonly Curves: FFS predictionPhys. Rev. D59:119901,1999  (deg) 2 < Q2< 4 160 GeVmuon beam 2.5m LH2 target 2 years L = 1222 pb-1 εglobal = 10 % 1 < Q2 < 2 0.03< x < 0.07 0.02 < x < 0.03 0.01< x < 0.02 0.005< x < 0.01

  12. statistical precision of the cosϕ modulation BCSA = DU,CS /SU,CS = A0+ ACS,Ucosϕ+ A2 cos2ϕ B B B B B B

  13. Meson production : filter of GPDs • Cross section measurement : • Vectormeson : ρ,ω,…H & E • Pseudo-scalar : π,η… H & E ~ ~ Wouldallow for flavorseparation : Hρ0= 1/2 (2/3 Hu + 1/3 Hd + 3/8 Hg) Hω= 1/2 (2/3 Hu – 1/3 Hd + 1/8 Hg) H = -1/3 Hs - 1/8 Hg  ρ: ω :   9 : 1 : 2 at large Q2 Transverselypolarizedtargetasymmetry on vectormeson : E/H ( studiedat COMPASS without RPD )

  14. Continuation of the GPD program :constrain the GPD E with+, - beamand transverselypolarized NH3 (proton) target DT,CS dT(+) -dT(-) Im(F2H– F1E)sin(- S) cos  160 GeV muon beam 1.2 m polarized NH3 target (f=0.26) 2 years - εglobal = 10 %

  15. GPD program : new equipments DVCSμp μ’p’ μ’ ECal1 + ECal2 10° • 2.5 m liquid H2target μ Hermeticcalorimetry new ECAL0 p’ 4m long Recoil Proton Detector Later stage… Transverselypolarizedtarget Associated RPD

  16. Recoil Proton Detector • 4 m long scintillatorslabs • ~ 300ps timing resolution • Full scale prototype • testedsuccessfully Gandalf Project: 1 GHz digitalisation of the PMT signal to cope for high rate

  17. ECAL 0 • Requirements • - Photon energy range 0.2- 30 GeV • - Size: 320cm x 320cm ; • - Granularity 4x4 – 6x6cm2 • - Energy resolution < 10.0%/√E (GeV) • - Thickness < 50 cm, • - Insensitive to the magnetic field. • Prototype under studies • Shaschlyk module with AMPD readout • Tested DVCS+BH ECAL1&2

  18. Ring B Ring A 2008 beam test Compass hadron run Target region Selection of events : - one vertex with μ and μ’ - no other charged tracks - only 1 high energy photon (Δt<5ns) - 1 proton in RPD with p < 1. GeV/c DVCS Bethe-Heitler

  19. 2008 beam test : exclusivity cuts μ’+γ Δp =|Pμ’+γ|-|PRPD| Δpperp < 0.2 GeV γ μ’ miss Δϕ proton Transverse plane Δϕ=ϕmiss- ϕRPD Δϕ < 36 deg

  20. 2008 beam test : Bethe-Heitler signal Monte-Carlo simulation of BH (dominant) and DVCS Deep VCS Bethe-Heitler => Bethe-Heitlerobserved Detection efficiency : εμ+p->μ+p+γ = 0.32 +/- 0.13 After all cuts, Q2>1GeV2 • Global efficiency : • - μ+p->μ+p+γ efficiency • SPS & COMPASS availability • Dead time • trigger efficiency • εglobal = 0.13 +/- 0.05 Projections of errors are realistic ~ 10 times more data taken in 2009

  21. Conclusions & perspectives • COMPASS has a great potential in GPDs physics • Study of the GPD H with a LH2 target : • measurement ott-slopes – transversepartonic structure of the nucleon • measurement of Beam Charge and Spin differences & asymmetries • Equipementsneeded : • 4m long RPD, 2.5m LH2 target, Extended & improved calorimetry • at a later stage : • study of the GPD E with a transverselypolarized target

  22. μ’ * θ μ p φ DU,CS /SU,CS : Beam Charge & Spin Asymetry BCSA = DU,CS /SU,CS 160 GeVmuon beam 2.5m LH2 target 2 years L = 1222 pb-1 εglobal = 10 % Bj

  23. Experimentalrealisation 2008 DVCS beam test Compass hadron set-up μ’ γ proton • New « superRPD » and H2target • Hermeticcalorimetry : Move ECALsupstream and/or completeECAL2 • New ECAL0 upstream of SM1

  24. ECAL0 and ECAL1 2008 DVCS beam test Horizontal proton γ μ’ “superRPD” SM1 Vertical ECAL0 ECAL1 ECAL2

  25. Hadron program RPD Proton identification in RPD Elasticscattering (hadron beam)

  26. Kinematical consistency : ϑγ*γ μ’ With μ, μ’ and γ : μ γ* With μ, μ’ and proton : γ proton μ+p->μ’+γ+p Events rejected

  27. μ’ * θ μ p φ Exclusive photon production signal After cuts All Q2 Before cuts All Q2 The peakatφ=0 remains => caracteristic of BH

  28. Ring B Ring A Liquid H2 Target & RPD

  29. Measurements and Estimations for resolution tmin=-0.06 GeV2 Good resolution in t Importance for the the transverse imaging

More Related