observational cosmology a laboratory for fundamental physics
Download
Skip this Video
Download Presentation
Observational Cosmology - a laboratory for fundamental physics

Loading in 2 Seconds...

play fullscreen
1 / 38

Observational Cosmology - a laboratory for fundamental physics - PowerPoint PPT Presentation


  • 109 Views
  • Uploaded on

Observational Cosmology - a laboratory for fundamental physics. MPI-K, Heidelberg 24.11.2011 Marek Kowalski . Outline. Introduction Cosmological probes Cosmological constraints. Our Cosmological Framework derives from…. Observation: The Universe is Expanding

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Observational Cosmology - a laboratory for fundamental physics' - luna


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
observational cosmology a laboratory for fundamental physics

ObservationalCosmology - a laboratoryfor fundamental physics

MPI-K, Heidelberg 24.11.2011

Marek Kowalski

slide2

Outline

  • Introduction
  • Cosmologicalprobes
  • Cosmologicalconstraints
our cosmological framework derives from
Our Cosmological Framework derives from…

Observation: The Universe is Expanding

Principles: Homogeneous, isotropic

Theory: General Relativity

Friedman Equation, which governs expansion

our cosmological framework derives from1
Our Cosmological Framework derives from…

Observation: The Universe is Expanding

Principles: Homogeneous, isotropic

Theory: General Relativity

Friedman Equation, which governs expansion

Matter Density

our cosmological framework derives from2
Our Cosmological Framework derives from…

Observation: The Universe is expanding

Principles: Homogeneous, isotropic

Theory: General Relativity

Friedman Equation, which governs expansion

Matter Density

Cosmological Constant/ Dark Energy

our cosmological framework derives from3
Our Cosmological Framework derives from…

Observation: The Universe is expanding

Principles: Homogeneous, isotropic

Theory: General Relativity

Friedman Equation, which governs expansion

Matter Density

Cosmological Constant/ Dark Energy

Curvature

the standard model of cosmology cdm
Thestandardmodel of cosmology: ΛCDM

Ingredients of ΛCDM:

  • Cosmologicalconstant
  • Cold Dark Matter
  • Baryons
  • 3 light neutrinoflavors
  • Ampl. of primord. fluctuations
  • Index of power spectrum
the standard model of cosmology cdm1
Thestandardmodel of cosmology: ΛCDM

Beyondthestandardmodel:

  • Non-Λdarkenergy
  • Hot dark matter,

e.g. massive neutrinos

  • Additional relativisticspecies,

e.gextra neutrinospecies

  • Tensorperturbations

& runningspectralindex

⇒ physics of Inflation

slide12

CosmologicalProbes:

Selectednewresults

slide13

CosmicMicrowave Background

New groundbaseddata from:

South Pole Telescope (SPT) &

Atacama CosmologyTelescope (ACT)

WMAP

ACT – 6 m telescope

Planck: 2009 - 2011

slide14

CosmicMicrowave Background

New groundbaseddata from:

South Pole Telescope (SPT) &

Atacama CosmologyTelescope (ACT)

WMAP

WMAP: 2001 - ?

SPT

CMB fit with

forground;

SPT-afterfilter

w/o forground

4σ detections of CMB weaklensing

slide15

Galaxy Clusters

CMB footprint

X-rayfootprint

Picture credit: ESA

First scienceresults of Planck (A&A, 2011)

sne ia hubble diagram
SNeIa Hubble Diagram

A bit

brighter M

fainterthen

expected

normalization

  •  M
  • 1 0
  • 0.72 0.28
  • 0 1

Supernova Cosmology Project (SCP)Kowalski et al. (2008)

fainter

sne ia hubble diagram1
SNeIa Hubble Diagram
  •  M
  • 1 0
  • 0.72 0.28
  • 0 1

Supernova Cosmology Project (SCP)Kowalski et al. (2008)

HST

SNLS

Essence

fainter

SDSS

PanStarrs

PTF

SNF

CfA

slide19

HST Survey of Clusters with z ≥ 1

Survey of z>0.9 galaxyclusters

⇒ SNefromcluster & field

⇒ about 2 x moreefficient

⇒ enhencement of earlyhosts

⇒ 20 new HST SNe

⇒ 10 high quality z>1 SNe!

Cycle 14, 219 orbits (PI S. Perlmutter)

24 clusters from RCS, RDCS,IRAC, XMM

Supernova Cosmology Project

Suzuki et al., 2011

hst survey of clusters with z 1
HST Survey of Clusters with z ≥ 1

Supernova Cosmology Project

Suzuki et al., 2011

slide22

BaryonAcousticOscillation

Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology.

Sloan Digital Sky Survey

slide23

BaryonAcousticOscillation

Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology.

WiggleZsurvey – Blake et al, 2011

slide24

BaryonAcousticOscillation

Acoustic „oscillation“ lenghscalefrom CMB visible in thedistribution of galaxies ⇒ Standard ruler of cosmology.

Promisingtechnique & muchactivity: BOSS, HETDEX,...

slide25

CosmologicalConstraints:

Selectednewresults

slide26

ΛCDM

SNe (Union 2.1, Suzuki et. al, 2011)

BAO (Percival et. al, 2010)

CMB (WMAP-7 year data, 2010)

Supernova Cosmology Project

Suzuki et al., 2011

ΩΛ=0.729 ± 0.014

and allowing for

curvature:

Ωk=0.002 ± 0.005

fundamental problems of vacuum energy cosmological constant

Whynow?

Matter: r R-3

Vakuum Energy: r = constant

Fundamental Problems of VacuumEnergy/CosmologicalConstant:
  • Why so small?
  • Expectation: rL ~ (Mplanck)4
  • 120 orders of magnitudes larger thentheobservedvalue!

Dark Energy with

equation-of-state:

p=wr

(p = pressure; r = density)

 ρ R -3(1+w)

slide28

Dark Energy

Supernova Cosmology Project

Suzuki et al., 2011

Equation of state: p=wρ

Constant w:

w=-0.995±0.078

cosmological

constant

slide29

Dark Energy

Supernova Cosmology Project

Suzuki et al., 2011

Equation of state: p=wρ

Constant w:

w=-0.951±0.078

Redshiftdependent w:

w(a)=w0+(1-a)xwa

Wa = 0.14±0.68

Λ

cosmological

constant

No deviationfrom

w=-1 (i.e. Λ)

redshift dependent eos
Redshiftdependent EOS

A floating non-SNe bin to decouple

low from high-redshift constraints

Assuming step-wise constant w:

~20% improved

constraints

slide31

Constraints on Inflation parameters

e.g. Chaotic Inflation (Linde, 1983)

Power spectrum of

curvatureperturbations

slide32

Constraints on Inflation parameters

e.g. Chaotic Inflation (Linde, 1983)

Power spectrum of

curvatureperturbations

Tensor-to-scalarratio (r)

Scalarspectralindex

ns =0.966±0.011

Tensor-to-scalarratio

r<0.21

scalarspectralindex (ns)

SPT+ WMAP7 (Keisler et al. 2011)

slide33

Number of relativisticspecies (neutrinos!)

CMB (& BaryonNucleosynthesis) sensitive to number of neutrinospeciesNeff

SPT+WMAP7: Neff= 3.85±0.62 (68% CL)

slide34

Neutrino massfrom CMB & large scalestructure

Damping of correlation power due to freestreaming at epoch of radiation-matterequality:

Tegmark et al. 2004

Combination of

CMB+BAO+H0:

e.g. Komatsu et al (2010)

Similarmassbounds also for

LSND-like sterile neutrinos

Hamann et al (2010)

slide35

Summary

  • Cosmology today is about precision
  • Multiple probes for highest sensitivity
  • ΛCDM looks strong so far – despite interpretational problems with dark energy
  • Many new surveys committed, hence significant progress expected!
counting galaxy clusters
CountingGalaxy Clusters

Vikhlini et al. ApJ, 2009

Upcomingsurveys: eROSITA, DES, ...

redshift dependent eos1
Redshiftdependent EOS

A floating non-SNe bin to decouple

low from high-redshift constraints

Assuming step-wise constant w:

ad