Full-Dispersion BTE Transport - Details in Narumanchi et al (2004,2005).
- Objective is to include more granularity in phonon representation.
- Divide phonon spectrum and polarizations into “bands”. Each band has a set of BTE’s in all directions
- Put all optical modes into a single “reservoir” mode with no velocity.
- Model scattering terms to allow interactions between frequencies. Ensure Fourier limit is recovered by proper modeling
- Model relaxation times for all these scattering interactions based on perturbation theory (Han and Klemens,1983)
- Model assumes isotropy, using [100] direction dispersion curves in all directions

Narumanchi, S.V.J., Murthy, J.Y., and Amon, C.H.; Sub-Micron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization; ASME Journal of Heat Transfer, Vol. 126, pp. 946—955, 2004.

Narumanchi, S.V.J., Murthy, J.Y., and Amon, C.H.; Comparison of Different Phonon Transport Models in Predicting Heat Conduction in Sub-Micron Silicon-On-Insulator Transistors; ASME Journal of Heat Transfer, 2005 (in press).

Han, Y.-J. and P.G. Klemens, Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures. Physical Review B, 1983. 48: p. 6033-6042.

ME 595M J.Murthy