1 / 37

X-ray imaging spectrometers in present and future satellite missions

X-ray imaging spectrometers in present and future satellite missions. Peter Lechner MPI Halbleiterlabor & PNSensor GmbH. 1. X-ray imaging spectrometers in present and future satellite missions. MPI Semiconductor Lab X-ray Astronomy pnCCD XMM-Newton Framestore pnCCD ROSITA

loring
Download Presentation

X-ray imaging spectrometers in present and future satellite missions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. X-ray imaging spectrometers in present and future satellite missions Peter Lechner MPI Halbleiterlabor & PNSensor GmbH 1

  2. X-ray imaging spectrometers in present and future satellite missions • MPI Semiconductor Lab • X-ray Astronomy • pnCCD XMM-Newton • Framestore pnCCD ROSITA • Active Pixel Sensor XEUS • Conclusion 100 % personally biased apologies! 1

  3. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion • common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics • founded in 1992 • 35 scientists, engineers, technicians, students MPI semiconductor laboratory • development of novel detectors •  high energy physics • ALEPH, ATLAS @ CERN HERA-B, TESLA @ DESY  astrophysics • XMM-Newton, XEUS, ROSITA, MEGA, SVOM •  related fields • synchrotron radiation experiments •  technology transfer • Silicon Drift Detectors for X-ray spectroscopy • industrial applications strip detectors for ALEPH/CERN 2

  4. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion • common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics • founded in 1992 • 35 scientists, engineers, technicians, students MPI semiconductor laboratory • development of novel detectors •  high energy physics • ALEPH, ATLAS @ CERN HERA-B, TESLA @ DESY  astrophysics • XMM-Newton, XEUS, ROSITA, MEGA, SVOM •  related fields • synchrotron radiation experiments •  technology transfer • Silicon Drift Detectors for X-ray spectroscopy • industrial applications pnCCD camera for XMM-Newton 2

  5. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion • common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics • founded in 1992 • 35 scientists, engineers, technicians, students MPI semiconductor laboratory • development of novel detectors •  high energy physics • ALEPH, ATLAS @ CERN HERA-B, TESLA @ DESY  astrophysics • XMM-Newton, XEUS, ROSITA, MEGA, SVOM •  related fields • synchrotron radiation experiments •  technology transfer • Silicon Drift Detectors for X-ray spectroscopy • industrial applications Silicon Drift Detector Array for EXAFS, X-ray holography 2

  6. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion • common institution of the Max-Planck-Institutes for Physics and for Extraterrestrial Physics • founded in 1992 • 35 scientists, engineers, technicians, students MPI semiconductor laboratory • development of novel detectors •  high energy physics • ALEPH, ATLAS @ CERN HERA-B, TESLA @ DESY  astrophysics • XMM-Newton, XEUS, ROSITA, MEGA, SVOM •  related fields • synchrotron radiation experiments •  technology transfer • Silicon Drift Detectors for X-ray spectroscopy • industrial applications KETEK GmbH Silicon Drift Detector modules for X-ray fluorescence analysis and electron microprobe analysis 2

  7. mounting & bonding test & qualification simulation, layout & data analysis MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion MPI semiconductor laboratory 800 m² cleanroom up to class 1 ... ... with modern, custom made facilities ... ... for a full 6-inch silicon process line 3

  8. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion X-ray astronomy • access to hot matter and energetic processes • supernovae • X-ray bursters • neutron stars • X-ray binaries • pulsars • black holes • quasars 4

  9. XMM mirrors X-ray astronomy - instrumentation • telescope • collimator, coded mask • mirror telescope ´Wolter-I´ • grazing angle reflection • (microchannel plate) MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion 5

  10. XMM-Newton Chandra MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion X-ray astronomy - instrumentation • telescope • collimator, coded mask • mirror telescope ´Wolter-I´ • grazing angle reflection • (microchannel plate) • focal plane • proportional counter • CCD • ASCA, Chandra, XMM-Newton • APS • XEUS • (high-Z semiconductors, cryogenic detectors) 5

  11. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD principle • MOS-CCD (´video CCD´) • MOS transfer gates • buried channel • partial depletion • frontside illumination • serial readout 6

  12. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD principle • MOS-CCD (´video CCD´) • MOS transfer gates •  implanted pn-junctions • buried channel •  deep transfer • partial depletion •  full depletion • frontside illumination •  back entrance window • serial readout •  1 preamp / channel • pnCCD 6

  13. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD performance • largest monolithic CCD • 6 x 6 cm² • 384 x 400 pixel • 150 µm pixel • fast readout • 5 msec full frame • low noise • 4 el. rms • high quantum efficiency • 90 % • radiation hard • 400 Mp/cm² 7

  14. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD performance • largest monolithic CCD • 6 x 6 cm² • 384 x 400 pixel • 150 µm pixel • fast readout • 5 msec full frame • low noise • 4 el. rms • high quantum efficiency • 90 % • radiation hard • 400 Mp/cm² 7

  15. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD performance • largest monolithic CCD • 6 x 6 cm² • 384 x 400 pixel • 150 µm pixel • fast readout • 5 msec full frame • low noise • 4 el. rms • high quantum efficiency • 90 % • radiation hard • 400 Mp/cm² 7

  16. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD performance • largest monolithic CCD • 6 x 6 cm² • 384 x 400 pixel • 150 µm pixel • fast readout • 5 msec full frame • low noise • 4 el. rms • high quantum efficiency • 90 % • radiation hard • 400 Mp/cm² 7

  17. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD vs. MOS-CCDs backside illumination full depletion large pixels, parallel readout 8

  18. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion XMM-Newton – the satellite • 3 imagers • 2 MOS-CCD + RGS • 1 pnCCD • pointing at one source • energy range • 0.1 ... 15 keV • Wolter-I telescopes • 58 nested mirror shells • eff. area 0,5 m² (1 keV) • focal length 7,5 m • FOV 30 arcmin • resolution 15 arcsec • highly excentric orbit • 48 h • perigee: 7.000 km • apogee: 114.000 km 9

  19. satellite integration • mirror system MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion • mounting of pnCCD camera XMM-Newton – integration & launch 10

  20. XMM-Newton in orbit MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion XMM-Newton – integration & launch • launch by ARIANE-V from Kourou • 10–Dec–1999 10

  21. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion XMM-Newton – first light large Magellanic cloud supernova remnant 1987A 11

  22. energy [keV] relative intensity element distribution MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion XMM-Newton - observations remnant of supernova observed by Tycho Brahe in 1572 12

  23. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion XMM-Newton - observations Lockman hole: a look into deep space first observation of ´green´ and ´blue´ hard x-ray sources no diffuse background? 12

  24. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD – performance in space • perfect imaging since launch • 500 revolutions • > 1000 observations • no significant change of • energy resolution and • charge transfer efficiency • few pixels lost in rev. 156 • impact of micro-meteorite? • effect reproduced on ground • using a dust accelerator 13

  25. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion pnCCD - limitation charge transfer speed limited by the time needed for readout ´out of time´ events pnCCD: ~ 6 % 14

  26. prototypes under test •  smaller pixels (75 µm) •  improved performance MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion • frame store area •  separation transfer / readout •  reduction of out-of-time events • 6 % (XMM)  0.4 % framestore pnCCD 15

  27. point sources diffuse background MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion ROSITA - ROentgen Survey with an Imaging Telescope Array 16

  28. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion XEUS – X-ray Evolving Universe Spectroscopy • X-ray telescope with large aperture • energy range 100 eV ... 30 keV • scientific aim: • investigation of the universe • at an early evolution stage • two spacecrafts • - mirror spacecraft • Wolter-I telescope • effective area: 6 m² (30 m²) @ 1keV • - detector spacecraft • focal plane instrumentation • - 2 narrow field imagers • - 1 wide field imager 17

  29. Active Pixel Sensor  1 integrated preamp / pixel  random accessible pixels  no charge transfer within silicon MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion XMM XEUS WFI energy range 0.1 ... 15 keV 0.1 ... 20 keV thickness 300 µm 500 µm focal length 7.5 m 50 m angular resolution 15 arcsec 2 arcsec focal plane res. 36 µm / arcsec 250 µm / arcsec pixel size 150 µm  75 µm field of view 30 arcmin 5 arcmin detector area 6 x 6 cm²  7.6 x 7.6 cm² collection area 1keV 0.5 m² 6 m² (30 m²) readout speed time resolution 70 msec 1 ... 5 msec readout speed operating temp. 130 K > 180 K XEUS WFI vs. XMM-Newton 18

  30. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion DEPFET – DEpleted P-channel Field Effect Transistor • p-FET (JFET or MOSFET) • on depleted n-Si bulk • local potential minimum for • electrons ‘internal gate‘ • current change prop. to number • of charges in the ‘internal gate‘ • DI > 200 pA / electron • nondestructive readout • charge integration and storage • in ON and OFF state • reset through clear contact, • supported by clear gate • backside illuminated 19

  31. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion DEPFET – simulation 20

  32. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion DEPFET – active pixel sensor 21

  33. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion DEPFET – active pixel sensor 22

  34. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion BioScope for autoradiography (University Bonn) DEPFET – active pixel sensor 23

  35. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion DEPFET – status • test of isolated pixel • JFET-based DEPFET • L = 5 µm, W = 50 µm • time-continuous filter • ______________________ • production of APS prototypes 64 x 64 • new readout chip • under test • new control chip • submitted 24

  36. MPI laboratory X-ray astronomy pnCCD framestore pnCCD active pixel sensor conclusion Conclusion • X-ray astronomy • driving force in semiconductor detector development novel detectors • new view to the X-ray sky ... no end in sight ... 25

  37. L. Andricek, D. Hauff, P. Klein*, G.Lutz, R.H. Richter, M. Schnecke, P. Solc* Max-Planck-Institut für Physik, Munich, Germany H. Bräuninger, S. Bonerz, U. Briel, K. Dennerl, J. Englhauser, G. Hartner, G. Hasinger, T. Johannes*, S. Kemmer*, J. Kollmer, N. Krause*, N. Meidinger, E. Pfeffermann, E. Ruttkowski, G. Schaller, F. Schopper, D. Stötter*, L. Strüder, J. Treis, J. Trümper Max-Planck-Institut für extraterrestrische Physik, Garching, Germany R. Eckard, R. Hartmann, K. Heinzinger, P. Holl, P. Lechner, H. Soltau, U. Weichert PNSensor GmbH, Munich, Germany N. Findeis*, J. Kemmer, S. Krisch*, R. Stötter, U. Weber* KETEK GmbH, Munich, Germany E. Kendziorra, K. Kramer, R. Staubert Astronomisches Institut Tübingen, Tübingen, Germany P. Fischer, W. Neeser*, I. Peric, M. Trimpl, J. Ulrici, N. Wermes University of Bonn, Bonn, Germany W. Buttler Ingenieurbüro Buttler, Essen, Germany E. Gatti, A. Longoni, M. Sampietro Politecnico di Milano, Milan, Italy P. Rehak Brookhaven National Laboratory, Upton, NY, USA Thanks 26

More Related